【題目】為考察某動(dòng)物疫苗預(yù)防某種疾病的效果,現(xiàn)對(duì)200只動(dòng)物進(jìn)行調(diào)研,并得到如下數(shù)據(jù):

未發(fā)病

發(fā)病

合計(jì)

未注射疫苗

20

60

80

注射疫苗

80

40

120

合計(jì)

100

100

200

(附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

則下列說(shuō)法正確的:(

A.至少有99.9%的把握認(rèn)為“發(fā)病與沒(méi)接種疫苗有關(guān)”

B.至多有99%的把握認(rèn)為“發(fā)病與沒(méi)接種疫苗有關(guān)”

C.至多有99.9%的把握認(rèn)為“發(fā)病與沒(méi)接種疫苗有關(guān)”

D.“發(fā)病與沒(méi)接種疫苗有關(guān)”的錯(cuò)誤率至少有0.01%

【答案】A

【解析】

根據(jù)所給表格及公式,即可計(jì)算的觀測(cè)值,對(duì)比臨界值表即可作出判斷.

根據(jù)所給表格數(shù)據(jù),結(jié)合計(jì)算公式可得其觀測(cè)值為

,

所以至少有99.9%的把握認(rèn)為發(fā)病與沒(méi)接種疫苗有關(guān),

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)中,滿足對(duì),當(dāng)時(shí),;函數(shù);函數(shù).現(xiàn)給出是偶函數(shù);上單調(diào)遞增;無(wú)最大值;個(gè)零點(diǎn)這四個(gè)結(jié)論,則正確結(jié)論的編號(hào)是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】11月,2019全國(guó)美麗鄉(xiāng)村籃球大賽在中國(guó)農(nóng)村改革的發(fā)源地-安徽鳳陽(yáng)舉辦,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設(shè)甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.

1)經(jīng)過(guò)1輪投球,記甲的得分為,求的分布列;

2)若經(jīng)過(guò)輪投球,用表示經(jīng)過(guò)第輪投球,累計(jì)得分,甲的得分高于乙的得分的概率.

①求;

②規(guī)定,經(jīng)過(guò)計(jì)算機(jī)計(jì)算可估計(jì)得,請(qǐng)根據(jù)①中的值分別寫出a,c關(guān)于b的表達(dá)式,并由此求出數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多邊形ABPCD中(圖1),四邊形ABCD為長(zhǎng)方形,為正三角形,,,現(xiàn)以BC為折痕將折起,使點(diǎn)P在平面ABCD內(nèi)的射影恰好在AD上(圖2.

1)證明:平面平面PAB

2)若點(diǎn)E在線段PB上,且,當(dāng)點(diǎn)Q在線段AD上運(yùn)動(dòng)時(shí),求點(diǎn)Q到平面EBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為抗擊“新冠肺炎”,全國(guó)各地“停課不停學(xué)”,各學(xué)校都開(kāi)展了在線課堂,組織學(xué)生在線學(xué)習(xí),并自主安排時(shí)間完成相應(yīng)作業(yè)為了解學(xué)生的學(xué)習(xí)效率,某在線教育平臺(tái)統(tǒng)計(jì)了部分高三備考學(xué)生每天完成數(shù)學(xué)作業(yè)所需的平均時(shí)間,繪制了如圖所示的頻率分布直方圖.

1)如果學(xué)生在完成在線課程后每天平均自主學(xué)習(xí)時(shí)間(完成各科作業(yè)及其他自主學(xué)習(xí))為小時(shí),估計(jì)高三備考學(xué)生每天完成數(shù)學(xué)作業(yè)的平均時(shí)間占自主學(xué)習(xí)時(shí)間的比例(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表)(結(jié)果精確到);

2)以統(tǒng)計(jì)的頻率作為概率,估計(jì)一個(gè)高三備考學(xué)生每天完成數(shù)學(xué)作業(yè)的平均時(shí)間不超過(guò)分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】團(tuán)購(gòu)已成為時(shí)下商家和顧客均非常青睞的一種省錢、高校的消費(fèi)方式,不少商家同時(shí)加入多家團(tuán)購(gòu)網(wǎng).現(xiàn)恰有三個(gè)團(tuán)購(gòu)網(wǎng)站在市開(kāi)展了團(tuán)購(gòu)業(yè)務(wù), 市某調(diào)查公司為調(diào)查這三家團(tuán)購(gòu)網(wǎng)站在本市的開(kāi)展情況,從本市已加入了團(tuán)購(gòu)網(wǎng)站的商家中隨機(jī)地抽取了50家進(jìn)行調(diào)查,他們加入這三家團(tuán)購(gòu)網(wǎng)站的情況如下圖所示.

(1)從所調(diào)查的50家商家中任選兩家,求他們加入團(tuán)購(gòu)網(wǎng)站的數(shù)量不相等的概率;

(2)從所調(diào)查的50家商家中任取兩家,用表示這兩家商家參加的團(tuán)購(gòu)網(wǎng)站數(shù)量之差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(3)將頻率視為概率,現(xiàn)從市隨機(jī)抽取3家已加入團(tuán)購(gòu)網(wǎng)站的商家,記其中恰好加入了兩個(gè)團(tuán)購(gòu)網(wǎng)站的商家數(shù)為,試求事件“”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語(yǔ)音、短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國(guó),甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場(chǎng)隨機(jī)采訪140位市民進(jìn)行調(diào)查,其中每天玩微信超過(guò)6小時(shí)的用戶稱為微信控,否則稱其為非微信控, 調(diào)查結(jié)果統(tǒng)計(jì)如下:

微信控

非微信控

合計(jì)

女性

60

男性

30

合計(jì)

70

140

1)根據(jù)以上數(shù)據(jù),把表格中的數(shù)據(jù)填寫完整;

2)利用(1)完成的表格數(shù)據(jù)回答下列問(wèn)題:

①是否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為微信控性別有關(guān);

②已知在被調(diào)查的女性微信控市民中有5位退休老人,其中2位是教師,現(xiàn)從這5位退休老人中隨機(jī)抽取2人,求至少有1位老師的概率.

附表:其中

P(K2k)

0.050

0.025

0.010

0.005

0.001

k

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)響應(yīng)省政府號(hào)召,對(duì)現(xiàn)有設(shè)備進(jìn)行改造,為了分析設(shè)備改造前后的效果,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了件產(chǎn)品作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.如圖是設(shè)備改造前的樣本的頻率分布直方圖,表是設(shè)備改造后的樣本的頻數(shù)分布表.

表:設(shè)備改造后樣本的頻數(shù)分布表

質(zhì)量指標(biāo)值

頻數(shù)

(1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與設(shè)備改造有關(guān);

設(shè)備改造前

設(shè)備改造后

合計(jì)

合格品

不合格品

合計(jì)

(2)根據(jù)頻率分布直方圖和表 提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對(duì)改造前后設(shè)備的優(yōu)劣進(jìn)行比較;

(3)企業(yè)將不合格品全部銷毀后,根據(jù)客戶需求對(duì)合格品進(jìn)行登記細(xì)分,質(zhì)量指標(biāo)值落在內(nèi)的定為一等品,每件售價(jià)元;質(zhì)量指標(biāo)值落在內(nèi)的定為二等品,每件售價(jià)元;其它的合格品定為三等品,每件售價(jià).根據(jù)表的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級(jí)產(chǎn)品的概率.現(xiàn)有一名顧客隨機(jī)購(gòu)買兩件產(chǎn)品,設(shè)其支付的費(fèi)用為(單位:元),求的分布列和數(shù)學(xué)期望.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線為參數(shù),),曲線為參數(shù)).若曲線相切.

1)在以為極點(diǎn),軸非負(fù)半軸為極軸的極坐標(biāo)系中,求曲線的極坐標(biāo)方程;

2)若點(diǎn),為曲線上兩動(dòng)點(diǎn),且滿足,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案