要使函數(shù)恒成立。求的取值范圍。

變題:設(shè),如果當(dāng)時(shí)有意義,求a的取值范圍。

 

【答案】

 變題: 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

要使函數(shù)y=1+2x+4xa在x∈(-∞,1]上y>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在下列命題中:
①若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈(
π
4
,
π
2
),則f(sinθ)>f(cosθ);
②若銳角α、β滿(mǎn)足cosα>sinβ,則α+β<
π
2

③若f(x)=2cos2
x
2
-1,則f(x+π)=f(x)對(duì)x∈R恒成立;
④對(duì)于任意實(shí)數(shù)a,要使函數(shù)y=5cos(
2k+1
3
πx-
π
6
)(k∈N*)在區(qū)間[a,a+3]上的值
5
4
出現(xiàn)的次數(shù)不小于4次,又不多于8次,則k可以取2和3.       
其中真命題的序號(hào)是
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆江蘇省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(1)已知,求函數(shù)的最大值和最小值;

(2)要使函數(shù)上f (x)恒成立,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù) R).

(Ⅰ)若 ,求曲線  在點(diǎn)  處的的切線方程;

(Ⅱ)若  對(duì)任意  恒成立,求實(shí)數(shù)a的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

第一問(wèn)中,利用當(dāng)時(shí),

因?yàn)榍悬c(diǎn)為(), 則,                 

所以在點(diǎn)()處的曲線的切線方程為:

第二問(wèn)中,由題意得,即可。

Ⅰ)當(dāng)時(shí),

,                                  

因?yàn)榍悬c(diǎn)為(), 則,                  

所以在點(diǎn)()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,

上單調(diào)遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當(dāng)時(shí),上恒成立,

上單調(diào)遞增,

.                  ……10分

(2)當(dāng)時(shí),令,對(duì)稱(chēng)軸,

上單調(diào)遞增,又    

① 當(dāng),即時(shí),上恒成立,

所以單調(diào)遞增,

,不合題意,舍去  

②當(dāng)時(shí),, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案