已知函數(shù)f(x)=
1
x
,則下列區(qū)間是遞減區(qū)間的是( 。
A、(-∞,0)∪(0,+∞)
B、(-∞,1)
C、(-∞,0),(0,+∞)
D、(-1,+∞)
考點(diǎn):函數(shù)的單調(diào)性及單調(diào)區(qū)間
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)分式函數(shù)的性質(zhì)即可得到結(jié)論.
解答: 解:函數(shù)f(x)的定義域?yàn)椋?,+∞)∪(-∞,0),
根據(jù)分式函數(shù)的性質(zhì)可知,函數(shù)的單調(diào)遞減區(qū)間為為(0,+∞),(-∞,0),
故選:C
點(diǎn)評:本題主要考查函數(shù)單調(diào)遞減區(qū)間的判斷,根據(jù)分式函數(shù)的性質(zhì)是解決本題的關(guān)鍵.比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
y2
a2
-
x2
b2
=1(a>0,b>0),若雙曲線的漸近線被圓M:x2+y2-10x=0所截的兩條弦長之和為12,則雙曲線的離心率為( 。
A、
5
4
B、
5
3
C、
4
3
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3sin(x+
π
6
)的一條對稱軸方程為( 。
A、x=
π
6
B、x=
π
4
C、x=
π
3
D、x=
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

tan12°-
3
sin6°sin84°
+32cos212°的值為(  )
A、4B、8C、16D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a2+a6=8,則a4=( 。
A、2B、4C、8D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A={x|y=
2x-x2
},B={y|y=
x2+1
x2
},則A∪B=(  )
A、(1,2]
B、[0,1)∪(1,2]
C、[0,+∞]
D、[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x(3lnx+1)在點(diǎn)(1,f(1))處的切線方程為( 。
A、x-4y+3=0
B、x-4y-3=0
C、4x+y-3=0
D、4x-y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=0.20.3,b=0.30.3,c=log0.20.1,則a,b,c的大小關(guān)系為( 。
A、a>b>c
B、b>a>c
C、c>b>a
D、c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在扶貧活動中,為了盡快脫貧(無債務(wù))致富,企業(yè)甲將經(jīng)營狀況良好的某種消費(fèi)品專賣店以5.8萬元的優(yōu)惠價格轉(zhuǎn)讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費(fèi)的開支3600無后,逐步償還轉(zhuǎn)讓費(fèi)(不計(jì)息).在甲提供的資料中有:①這種消費(fèi)品的進(jìn)價為每件14元;②該店月銷量Q(百件)與銷售價格P(元)的關(guān)系如圖所示;③每月需要各種開支2000元.
(1)當(dāng)商品的價格為每件多少元時,月利潤扣除職工最低生活費(fèi)的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

查看答案和解析>>

同步練習(xí)冊答案