六名學(xué)生需依次進(jìn)行身體體能和外語(yǔ)兩個(gè)項(xiàng)目的訓(xùn)練及考核。每個(gè)項(xiàng)目只有一次補(bǔ)考機(jī)會(huì),補(bǔ)考不合格者不能進(jìn)入下一個(gè)項(xiàng)目的訓(xùn)練(即淘汰),若每個(gè)學(xué)生身體體能考核合格的概率是,外語(yǔ)考核合格的概率是,假設(shè)每一次考試是否合格互不影響。
①求某個(gè)學(xué)生不被淘汰的概率。
②求6名學(xué)生至多有兩名被淘汰的概率
③假設(shè)某學(xué)生不放棄每一次考核的機(jī)會(huì),用表示其參加補(bǔ)考的次數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望。
1)正面:  ①兩個(gè)項(xiàng)目都不補(bǔ)考能通過(guò)概率:
②兩個(gè)項(xiàng)目中有一個(gè)項(xiàng)目要補(bǔ)考才能通過(guò)的概率:
③兩個(gè)項(xiàng)目都要補(bǔ)考才能通過(guò)的概率:

反面(間接法)被淘汰的概率:

2)
3)



0
1
2
P



 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

今天你低碳了嗎?近來(lái),國(guó)內(nèi)網(wǎng)站流行一種名為“碳排放計(jì)算器”的軟件,人們可以由此計(jì)算出自己每天的碳排放量。例如:家居用電的碳排放量(千克) = 耗電度數(shù)0.785,汽車(chē)的碳排放量(千克)=油耗公升數(shù)0.785等。懷化某中學(xué)高一一同學(xué)利用寒假在兩個(gè)小區(qū)逐戶(hù)進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查。若生活習(xí)慣符合低碳觀念的稱(chēng)為“低碳族”,否則稱(chēng)為“非低碳族”。這二族人數(shù)占各自小區(qū)總?cè)藬?shù)的比例P數(shù)據(jù)如右:

(I)如果甲、乙來(lái)自A小區(qū),丙、丁來(lái)自B小區(qū),求這4人中恰有2人是低碳族的概率;
(II)A小區(qū)經(jīng)過(guò)大力宣傳,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后隨機(jī)地從A小區(qū)中任選25人,記表示25個(gè)人中低碳族人數(shù),求E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

為了拓展網(wǎng)絡(luò)市場(chǎng),騰訊公司為用戶(hù)推出了多款應(yīng)用,如“農(nóng)場(chǎng)”、“音樂(lè)”、“讀書(shū)”等.某校研究性學(xué)習(xí)小組準(zhǔn)備舉行一次“使用情況”調(diào)查,從高二年級(jí)的一、二、三、四班中抽取10名學(xué)生代表參加,抽取不同班級(jí)的學(xué)生人數(shù)如下表所示:
班級(jí)
一班
二班
三班
四班
人數(shù)
2人
3人
4人
1人
(I)從這10名學(xué)生中隨機(jī)選出2名,求這2人來(lái)自相同班級(jí)的概率;
(Ⅱ) 假設(shè)在某時(shí)段,三名學(xué)生代表甲、乙、丙準(zhǔn)備分別從農(nóng)場(chǎng)、音樂(lè)、讀書(shū)中任意選擇一項(xiàng),他們選擇農(nóng)場(chǎng)的概率都為;選擇音樂(lè)的概率都為;選擇讀書(shū)的概率都為;他們的選擇相互獨(dú)立.設(shè)在該時(shí)段這三名學(xué)生中選擇讀書(shū)的總?cè)藬?shù)為隨機(jī)變量,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
有甲、乙兩種相互獨(dú)立的預(yù)防措施可以降低某地區(qū)某災(zāi)情的發(fā)生.單獨(dú)采用甲、乙預(yù)防措施后,災(zāi)情發(fā)生的概率分別為0.08和0.10,且各需要費(fèi)用60萬(wàn)元和50萬(wàn)元.在不采取任何預(yù)防措施的情況下發(fā)生災(zāi)情的概率為0.3.如果災(zāi)情發(fā)生,將會(huì)造成800萬(wàn)元的損失.(設(shè)總費(fèi)用=采取預(yù)防措施的費(fèi)用+可能發(fā)生災(zāi)情損失費(fèi)用)
(I)若預(yù)防方案允許甲、乙兩種預(yù)防措施單獨(dú)采用,他們各自總費(fèi)用是多少?
(II)若預(yù)防方案允許甲、乙兩種預(yù)防措施單獨(dú)采用、聯(lián)合采用或不采用,請(qǐng)確定預(yù)防方案使總費(fèi)用最少的那個(gè)方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

隨機(jī)變量服從正態(tài)分布"(0,1),若  P(<1) ="0.8413" 則P(-1<<0)=_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知隨機(jī)變量ξ的分布列為
ξ
1
2
3
4
5
P
0.1
0.2
0.4
0.2
0.1
η=2ξ-3,則η的期望為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知隨機(jī)變量的分布列如下表所示,的期望,則的值等于       ;

0
1
2
3
P
0.1


0.2
    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

隨機(jī)變量的分布如圖所示則數(shù)學(xué)期望         

0
1
2
3





 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

國(guó)家公務(wù)員考試,某單位已錄用公務(wù)員5人,擬安排到A、B、C三個(gè)科室工作,但甲必須安排在A科室,其余4人可以隨機(jī)安排。
(1)求每個(gè)科室安排至少1人至多2人的概率; 
(2)設(shè)安排在A科室的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望。

查看答案和解析>>

同步練習(xí)冊(cè)答案