【題目】已知橢圓的焦距為,橢圓上任意一點到橢圓兩個焦點的距離之和為6.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線 與橢圓交于兩點,點(0,1),且=,求直線的方程.
【答案】(1) ;(2) 或.
【解析】試題分析:(Ⅰ)由橢圓上任意一點到橢圓兩個焦點的距離之和為可得,由的焦距為,可得,再由的關(guān)系可得,進(jìn)而得到橢圓方程;(II)直線代入橢圓方程,運用韋達(dá)定理和判別式大于,再由中點坐標(biāo)公式和兩直線垂直的條件,可得的方程,解方程可得,從而可得直線方程.
試題解析:(Ⅰ)由已知,,解得,,
所以,
所以橢圓C的方程為。
(Ⅱ)由 得,
直線與橢圓有兩個不同的交點,所以解得。
設(shè)A(,),B(,)
則,,
計算,
所以,A,B中點坐標(biāo)E(,),
因為=,所以PE⊥AB,,
所以, 解得,
經(jīng)檢驗,符合題意,所以直線的方程為或.
【方法點晴】本題主要考查待定系數(shù)求橢圓方程以及直線與橢圓的位置關(guān)系,屬于難題.用待定系數(shù)法求橢圓方程的一般步驟;①作判斷:根據(jù)條件判斷橢圓的焦點在軸上,還是在軸上,還是兩個坐標(biāo)軸都有可能;②設(shè)方程:根據(jù)上述判斷設(shè)方程或 ;③找關(guān)系:根據(jù)已知條件,建立關(guān)于、、的方程組;④得方程:解方程組,將解代入所設(shè)方程,即為所求.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) 為實數(shù),且,
(I)求方程的解;
(II)若滿足,求證:①②;
(III)在(2)的條件下,求證:由關(guān)系式所得到的關(guān)于的方程存在,使
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某創(chuàng)業(yè)團(tuán)隊擬生產(chǎn)兩種產(chǎn)品,根據(jù)市場預(yù)測,產(chǎn)品的利潤與投資額成正比(如圖1),產(chǎn)品的利潤與投資額的算術(shù)平方根成正比(如圖2).(注: 利潤與投資額的單位均為萬元)
(注:利潤與投資額的單位均為萬元)
(1)分別將兩種產(chǎn)品的利潤、表示為投資額的函數(shù);
(2)該團(tuán)隊已籌集到10 萬元資金,并打算全部投入兩種產(chǎn)品的生產(chǎn),問:當(dāng)產(chǎn)品的投資額為多少萬元時,生產(chǎn)兩種產(chǎn)品能獲得最大利潤,最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣.
(1)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為,求實數(shù)a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),如果存在實數(shù)m,n(m<n),使得f(x)的定義域和值域分別是[m,n]和[3m,3n],則m+n=_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,F(xiàn)1、F2分別是雙曲線 =1(a>0,b>0)的兩個焦點,以坐標(biāo)原點O為圓心,|OF1|為半徑的圓與該雙曲線左支交于A、B兩點,若△F2AB是等邊三角形,則雙曲線的離心率為 ( )
A.
B.2
C. ﹣1
D.1+
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C, AB=3,BC=5.
(1)求證:AA1⊥平面ABC;
(2)求二面角A1-BC1-B1的余弦值;
(3)求點C到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)解不等式;
(2)若函數(shù),其中為奇函數(shù),為偶函數(shù),若不等式對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某海濱浴場海浪的高度y(米)是時間t(0≤t≤24,單位:時)的函數(shù),記作:.下表是某日各時的浪高數(shù)據(jù).
t(時) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
(1)根據(jù)以上數(shù)據(jù),求函數(shù)y=f(t)的函數(shù)表達(dá)式;
(2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時才對沖浪愛好者開放,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8:00時至晚上20:00時之間,有多少時間可供沖浪者進(jìn)行運動?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com