如圖所示,已知PA⊥矩形ABCD所在平面,
M,N分別是AB,PC的中點(diǎn).
(1)求證:MN⊥CD;
(2)若∠PDA=45°.求證:MN⊥平面PCD.
證明略
(1)連接AC,AN,BN,
∵PA⊥平面ABCD,∴PA⊥AC,
在Rt△PAC中,N為PC中點(diǎn),
∴AN=PC.
∵PA⊥平面ABCD,
∴PA⊥BC,又BC⊥AB,PA∩AB=A,
∴BC⊥平面PAB,∴BC⊥PB,
從而在Rt△PBC中,BN為斜邊PC上的中線,
∴BN=PC.
∴AN=BN,
∴△ABN為等腰三角形,
又M為底邊的中點(diǎn),∴MN⊥AB,
又∵AB∥CD,∴MN⊥CD.
(2)連接PM、CM,∵∠PDA=45°,PA⊥AD,∴AP=AD.
∵四邊形ABCD為矩形.
∴AD=BC,∴PA=BC.
又∵M(jìn)為AB的中點(diǎn),∴AM=BM.
而∠PAM=∠CBM=90°,∴PM=CM.
又N為PC的中點(diǎn),∴MN⊥PC.
由(1)知,MN⊥CD,PC∩CD=C,
∴MN⊥平面PCD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com