【題目】設樣本數(shù)據(jù)x1 , x2 , …,x10的均值和方差分別為1和4,若yi=xi+a(a為非零常數(shù),i=1,2,…,10),則y1 , y2 , …,y10的均值和方差分別為( )
A.1+a,4
B.1+a,4+a
C.1,4
D.1,4+a
【答案】A
【解析】解:方法1:∵yi=xi+a,
∴E(yi)=E(xi)+E(a)=1+a,
方差D(yi)=D(xi)+E(a)=4.
方法2:由題意知yi=xi+a,
則 = (x1+x2+…+x10+10×a)= (x1+x2+…+x10)= +a=1+a,
方差s2= [(x1+a﹣( +a)2+(x2+a﹣( +a)2+…+(x10+a﹣( +a)2]= [(x1﹣ )2+(x2﹣ )2+…+(x10﹣ )2]=s2=4.
所以答案是:A.
【考點精析】通過靈活運用平均數(shù)、中位數(shù)、眾數(shù)和極差、方差與標準差,掌握⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù);標準差和方差越大,數(shù)據(jù)的離散程度越大;標準差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標準差即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】在下列結(jié)論中: ①函數(shù)y=sin(kπ﹣x)(k∈Z)為奇函數(shù);
②函數(shù) 的圖象關(guān)于點 對稱;
③函數(shù) 的圖象的一條對稱軸為 π;
④若tan(π﹣x)=2,則cos2x= .
其中正確結(jié)論的序號為(把所有正確結(jié)論的序號都填上).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線Ω:x2=2py(p>0),過點(0,2p)的直線與拋物線Ω交于A、B兩點,AB的中點為M,若點M到直線y=2x的最小距離為 ,則p=( 。
A.
B.1
C.
D.2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln(1+x)﹣ax, .
(Ⅰ)當b=1時,求g(x)的最大值;
(Ⅱ)若對x∈[0,+∞),f(x)≤0恒成立,求a的取值范圍;
(Ⅲ)證明 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列{an}的前n項和為Sn , 且 (a∈N+).
(1)求a的值及數(shù)列{an}的通項公式;
(2)設 ,求{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系xOy中,橢圓C: 的離心率是 ,
拋物線E:x2=4y的焦點F是C的一個頂點.
(1)求橢圓C的方程;
(2)設與坐標軸不重合的動直線l與C交于不同的兩點A和B,與x軸交于點M,且 滿足kPA+kPB=2kPM , 試判斷點M是否為定點?若是定點求出點M的坐標;若不是定點請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知m>1,直線l:x﹣my﹣ =0,橢圓C: +y2=1,F(xiàn)1、F2分別為橢圓C的左、右焦點.
(Ⅰ)當直線l過右焦點F2時,求直線l的方程;
(Ⅱ)設直線l與橢圓C交于A、B兩點,△AF1F2 , △BF1F2的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com