設(shè)關(guān)于x的方程2x2+ax-9=0,bx2+x-6=0的解集分別為A、B,且A∩B={
32
}

(Ⅰ) 求a和b的值;
(Ⅱ) 求函數(shù)f(x)=ax2+bx-8的零點(diǎn).
分析:( I)由題意可得兩方程都有一根為x=
3
2
,代入可得答案;( II)由( I)的結(jié)果可得函數(shù)的解析式,分解因式易得零點(diǎn).
解答:解:( I)由題意可得兩方程都有一根為x=
3
2
,
代入可得2(
3
2
)2+
3
2
x-9=0
,,b(
3
2
)
2
+
3
2
-6=0
,
解得:a=3,b=2    (6分)
( II)由( I)可知a=3,b=2,
故f(x)=3x2+2x-8=(x+2)(3x-4)
故函數(shù)的零點(diǎn)為:x1=
4
3
,x2=-2
(6分)
點(diǎn)評(píng):本題考查函數(shù)的零點(diǎn),涉及方程的根與集合,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)關(guān)于x的方程2x2-ax-2=0的兩根為α、β(α<β),函數(shù)f(x)=
4x-ax2+1

(1)求f(α)、f(β)的值;
(2)證明f(x)是[α,β]上的增函數(shù);
(3)當(dāng)α為何值時(shí),f(x)在區(qū)間[α,β]上的最大值與最小值之差最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)關(guān)于x的方程2x2-ax-2=0的兩根為α,β(α<β),函數(shù)f(x)=
4x-ax2+1
,且|f(α)•f(β)|=4.
(1)證明:f(x)在[α,β]上是增函數(shù);
(2)當(dāng)α為何值時(shí),f(x)在[α,β]上的最大值與最小值之差最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省郴州一中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)關(guān)于x的方程2x2+ax-9=0,bx2+x-6=0的解集分別為A、B,且
(Ⅰ) 求a和b的值;
(Ⅱ) 求函數(shù)f(x)=ax2+bx-8的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省郴州一中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)關(guān)于x的方程2x2+ax-9=0,bx2+x-6=0的解集分別為A、B,且
(Ⅰ) 求a和b的值;
(Ⅱ) 求函數(shù)f(x)=ax2+bx-8的零點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案