如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四邊形ABCD繞AD旋轉(zhuǎn)一周所成幾何體的表面積及體積.

(60+4)π,π

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2013•浙江)如圖,在四面體A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M是AD的中點,P是BM的中點,點Q在線段AC上,且AQ=3QC.
(1)證明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小為60°,求∠BDC的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如右圖,在底面為平行四邊形的四棱柱中,底面,
,,

(1)求證:平面平面
(2)若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC平面ABC,,

(1)證明:平面ACD平面ADE;
(2)記,表示三棱錐A-CBE的體積,求函數(shù)的解析式及最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,∠BAC=90°,∠B=60°,AB=1,D為線段BC的中點,E、F為線段AC的三等分點(如圖①).將△ABD沿著AD折起到△AB′D的位置,連結(jié)B′C(如圖②).

圖①

圖②
(1)若平面AB′D⊥平面ADC,求三棱錐B′-ADC的體積;
(2)記線段B′C的中點為H,平面B′ED與平面HFD的交線為l,求證:HF∥l;
(3)求證:AD⊥B′E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,矩形ABCD中,AB=a,AD=b,過點D作DE⊥AC于E,交直線AB于F.現(xiàn)將△ACD沿對角線AC折起到△PAC的位置,使二面角PACB的大小為60°.過P作PH⊥EF于H.

(1)求證:PH⊥平面ABC;
(2)若a+b=2,求四面體PABC體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,ABAA1.

(1)證明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABDA1B1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知四棱錐P­ABCD的底面ABCD是邊長為2的正方形,PD⊥底面ABCD,EF分別為棱BC,AD的中點.
 
(1)求證:DE∥平面PFB;
(2)已知二面角P­BF­C的余弦值為,求四棱錐P­ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在四棱錐P -ABCD中,底面是邊長為2的菱形,∠DAB=60°,對角線AC與BD交于點O,PO⊥平面ABCD,PB與平面ABCD所成角為60°.

(1)求四棱錐的體積.
(2)若E是PB的中點,求異面直線DE與PA所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案