(本小題滿分14分)
中,角A,B,C的對邊分別為a,b,c,且
(1)求角C的大小;
(2)求的最大值.

(1)A+B=,C=.(2)A=時,取最大值2.

解析試題分析:(1)sinA+cosA=2sinB即2sin(A+)=2sinB,則sin(A+)=sinB.
因為0<A,B<p,又a≥b進而A≥B,
所以A+=p-B,故A+B=,C=
(2)由正弦定理及(Ⅰ)得
 [sinA+sin(A+)]=sinA+cosA=2sin(A+).
當A=時,取最大值2.
考點:本題主要考查三角函數(shù)恒等變換,正弦定理的應(yīng)用。
點評:典型題,為研究三角函數(shù)的圖象和性質(zhì),往往需要將函數(shù)“化一”。本題由正弦定理建立了的表達式,通過“化一”,利用三角函數(shù)性質(zhì),求得最大值。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知平面直角坐標系中,頂點的分別為,其中
(1)若,求的值;
(2)若,求周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù))的最小正周期為,
(Ⅰ)當時,求函數(shù)的最小值;
(Ⅱ)在中,若,且,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,在△ABC中,,.

(1)求;
(2)設(shè)的中點為,求中線的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)在△ABC中,已知A=45°,cosB =
(I)求cosC的值;
(11)若BC=" 10" , D為AB的中點,求CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
港口A北偏東30°方向的C處有一檢查站,港口正東方向的B處有一輪船,距離檢查站為31海里,該輪船從B處沿正西方向航行20海里后到達D處觀測站,已知觀測站與檢查站距離21海里,問檢查站C離港口A有多遠?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)如圖,,,,在線段上任取一點,

試求:(1)為鈍角三角形的概率;
(2)為銳角三角形的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知的內(nèi)角的對邊分別是,且.
(1) 求的值; (2) 求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分16分)
已知外接圓的半徑為2,分別是的對邊
  
(1)求               (2)求面積的最大值

查看答案和解析>>

同步練習冊答案