精英家教網 > 高中數學 > 題目詳情
(2013•東城區(qū)一模)對于函數y=f(x),部分x與y的對應關系如下表:
x 1 2 3 4 5 6 7 8 9
y 7 4 5 8 1 3 5 2 6
數列{xn}滿足x1=2,且對任意n∈N*,點(xn,xn+1)都在函數y=f(x)的圖象上,則x1+x2+x3+x4+…+x2012+x2013的值為( 。
分析:利用已知函數的關系求出數列的前幾項,得到數列是周期數列,然后求出通過周期數列的和,即可求解本題.
解答:解:因為數列{xn}滿足x1=2,且對任意n∈N*,點(xn,xn+1)都在函數y=f(x)的圖象上,xn+1=f(xn
所以x1=2,x2=4,x3=8,x4=2,x5=4,x6=8,x7=2,x8=4…
所以數列是周期數列,周期為3,一個周期內的和為14,
所以x1+x2+x3+x4+…+x2012+x2013=671×(x1+x2+x3)=9394.
故選A.
點評:本題考查函數與數列的關系,周期數列求和問題,判斷數列是周期數列是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•東城區(qū)一模)設A是由n個有序實數構成的一個數組,記作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)稱為數組A的“元”,S稱為A的下標.如果數組S中的每個“元”都是來自 數組A中不同下標的“元”,則稱A=(a1,a2,…,an)為B=(b1,b2,…bn)的子數組.定義兩個數組A=(a1,a2,…,an),B=(b1,b2,…,bn)的關系數為C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
,
1
2
)
,B=(-1,1,2,3),設S是B的含有兩個“元”的子數組,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
3
3
,
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S為B的含有三個“元”的子數組,求C(A,S)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•東城區(qū)一模)某游戲規(guī)則如下:隨機地往半徑為1的圓內投擲飛標,若飛標到圓心的距離大于
1
2
,則成績?yōu)榧案瘢蝗麸w標到圓心的距離小于
1
4
,則成績?yōu)閮?yōu)秀;若飛標到圓心的距離大于
1
4
且小于
1
2
,則成績?yōu)榱己,那么在所有投擲到圓內的飛標中得到成績?yōu)榱己玫母怕蕿椋ā 。?/div>

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•東城區(qū)一模)函數f(x)=sin(x-
π
3
)
的圖象為C,有如下結論:
①圖象C關于直線x=
6
對稱;
②圖象C關于點(
3
,0)
對稱;
③函數f(x)在區(qū)間[
π
3
,
6
]
內是增函數,
其中正確的結論序號是
①②③
①②③
.(寫出所有正確結論的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•東城區(qū)一模)已知全集U={1,2,3,4},集合A={1,2},那么集合?UA為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•東城區(qū)一模)數列{an}的各項排成如圖所示的三角形形狀,其中每一行比上一行增加兩項,若an=an(a≠0),則位于第10行的第8列的項等于
a89
a89
,a2013在圖中位于
第45行的第77列
第45行的第77列
.(填第幾行的第幾列)

查看答案和解析>>

同步練習冊答案