【題目】如圖,在幾何體中,四邊形ABCD為菱形,對(duì)角線AC與BD的交點(diǎn)為O,四邊形DCEF為梯形,EF∥DC,FD=FB.
(Ⅰ)若DC=2EF,求證:OE∥平面ADF;
(Ⅱ)求證:平面AFC⊥平面ABCD;
(Ⅲ)若AB=FB=2,AF=3,∠BCD=60°,求AF與平面ABCD所成角.
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析;(Ⅲ) 30°.
【解析】試題分析: (Ⅰ)取AD的中點(diǎn)G,連接OG,F(xiàn)G,證明OGFE為平行四邊形,可得OE∥FG,即可證明:OE∥平面ADF;
(Ⅱ)欲證:平面AFC⊥平面ABCD,即證BD⊥平面AFC;
(Ⅲ)做FH⊥AC于H,∠FAH為AF與平面ABCD所成角,即可求AF與平面ABCD所成角.
試題解析:
(Ⅰ)證明:取AD的中點(diǎn)G,連接OG,FG.
∵對(duì)角線AC與BD的交點(diǎn)為O,
∴OG∥DC,OG=DC,
∵EF∥DC,DC=2EF,∴OG∥EF,OG=EF,∴OGFE為平行四邊形,
∴OE∥FG,
∵FG平面ADF,OE平面ADF,
∴OE∥平面ADF;
(Ⅱ)證明:∵四邊形ABCD為菱形,
∴OC⊥BD,
∵FD=FB,O是BD的中點(diǎn),
∴OF⊥BD,
∵OF∩OC=O,
∴BD⊥平面AFC,
∵BD平面ABCD,
∴平面AFC⊥平面ABCD;
(Ⅲ)解:作FH⊥AC于H.
∵平面AFC⊥平面ABCD,∴FH⊥平面ABCD,
∴∠FAH為AF與平面ABCD所成角,
由題意,△BCD為正三角形,OA=,BD=AB=2,
∵FD=FB=2,
∴△FBD為正三角形,∴OF=.
△AOF中,由余弦定理可得cos∠AOF==-,
∴∠AOF=120°,
∴∠FAH=∠FAO=30°,
∴AF與平面ABCD所成角為30°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(I)若,求曲線在處的切線方程;
(II)討論函數(shù)在上的單調(diào)性;
(III)若存在,使得成立,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為。
(1)求、的值;
(2)如果當(dāng),且時(shí), ,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圍建一個(gè)面積為360的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為(單位:),修建此矩形場(chǎng)地圍墻的總費(fèi)用為(單位:元)
(1)將表示為的函數(shù);
(2)試確定,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)若曲線的一條切線經(jīng)過(guò)點(diǎn),求這條切線的方程.
(2)若關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根x1,x2。
①求實(shí)數(shù)a的取值范圍;
②證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測(cè)兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品. 表1是甲套設(shè)備的樣本的頻數(shù)分布表,圖1是乙套設(shè)備的樣本的頻率分布直方圖.
表1:甲套設(shè)備的樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數(shù) | 1 | 5 | 18 | 19 | 6 | 1 |
圖1:乙套設(shè)備的樣本的頻率分布直方圖
(Ⅰ)將頻率視為概率. 若乙套設(shè)備生產(chǎn)了5000件產(chǎn)品,則其中的不合格品約有多少件;
(Ⅱ)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān);
甲套設(shè)備 | 乙套設(shè)備 | 合計(jì) | |
合格品 | |||
不合格品 | |||
合計(jì) |
(Ⅲ)根據(jù)表1和圖1,對(duì)兩套設(shè)備的優(yōu)劣進(jìn)行比較.
附:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中, 平面, 為線段上一點(diǎn), , 為的中點(diǎn).
(1)證明:
(2)求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形AMDE的邊長(zhǎng)為2,B,C分別為AM,MD的中點(diǎn).在五棱錐P-ABCDE中,F為棱PE的中點(diǎn),平面ABF與棱PD,PC分別交于點(diǎn)G,H.
(1)求證:AB∥FG;
(2)若PA⊥底面ABCDE,且PA=AE.求直線BC與平面ABF所成角的大小,并求線段PH的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來(lái)”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)
經(jīng)常使用 | 偶爾或不用 | 合計(jì) | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計(jì) | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?
(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.
(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);
(ii)從這5人中,再隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com