已知等差數(shù)列an的首項(xiàng)為2,第10項(xiàng)為1,記Pn=a2+a4+…+a2n,(n∈N),求數(shù)列Pn中的最大項(xiàng),并指出最大項(xiàng)使該數(shù)列中的第幾項(xiàng).
分析:利用等差數(shù)列的通項(xiàng)公式求出公差;求出{a2n}的通項(xiàng);據(jù)通項(xiàng)知該數(shù)列的項(xiàng)是先正后負(fù),列出不等式求出為正的項(xiàng),得到和Pn
的最大值.
解答:解:設(shè)公差為d
∵a1=2,a10=1
d=
a10-a1
10-1
=-
1
9

a2n=a1+(2n-1)(-
1
9
)
=
19
9
-
1
9
2n

19
9
-
1
9
2n≥0
得n≤4
∴P4最大P4=Pn=a2+a4+a8+a16=
19
9
-
2
9
+
19
9
-
4
9
+
19
9
8
9
+
19
9
-
16
9
=
46
9

故數(shù)列Pn中的最大項(xiàng)為
46
9
,是該數(shù)列中的第4項(xiàng).
點(diǎn)評(píng):本題考查利用等差數(shù)列的通項(xiàng)公式求公差;利用數(shù)列的通項(xiàng)求數(shù)列和的最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的首項(xiàng)a1>0,公差d>0,前n項(xiàng)和為Sn,設(shè)m,n,p∈N*,且m+n=2p
(1)求證:Sn+Sm≥2Sp;
(2)求證:Sn•Sm≤(Sp2;
(3)若S1005=1,求證:
2009
n=1
1
Sn
≥2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泰安二模)已知等差數(shù)列{an}的首項(xiàng)a1=3,且公差d≠0,其前n項(xiàng)和為Sn,且a1,a4,a13分別是等比數(shù)列{bn}的b2,b3,b4
(Ⅰ)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(Ⅱ)證明
1
3
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•蚌埠二模)已知等差數(shù)列{an}的首項(xiàng)為p,公差為d(d>0).對(duì)于不同的自然數(shù)n,直線x=an與x軸和指數(shù)函數(shù)f(x)=(
12
)x
的圖象分別交于點(diǎn)An與Bn(如圖所示),記Bn的坐標(biāo)為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
(1)求證數(shù)列{sn}是公比絕對(duì)值小于1的等比數(shù)列;
(2)設(shè){an}的公差d=1,是否存在這樣的正整數(shù)n,構(gòu)成以bn,bn+1,bn+2為邊長(zhǎng)的三角形?并請(qǐng)說明理由;
(3)(理科做,文科不做)設(shè){an}的公差d=1,是否存在這樣的實(shí)數(shù)p使得(1)中無窮等比數(shù)列{sn}各項(xiàng)的和S>2010?如果存在,給出一個(gè)符合條件的p值;如果不存在,請(qǐng)說明理由.(參考數(shù)據(jù):210=1024)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d=2,其前n項(xiàng)和Sn滿足Sk+2-Sk=24,則k=
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•瀘州二模)已知等差數(shù)列{an}的首項(xiàng)為a,公差為b,等比數(shù)列{bn}的首項(xiàng)為b,公比為a,n=1,2,…,其中a,b均為正整數(shù),且b2=6,a3=8,a<b.
(Ⅰ)求a,b的值;
(Ⅱ)數(shù)列對(duì)于{an},{bn},存在關(guān)系式am+1=bn,試求a1+a2+…+am

查看答案和解析>>

同步練習(xí)冊(cè)答案