【題目】已知直線與拋物線相交于A,B兩點(diǎn),且與圓相切.

1)求直線x軸上截距的取值范圍;

2)設(shè)F是拋物線的焦點(diǎn),,求直線的方程.

【答案】1;(2.

【解析】

(1) 設(shè)直線的方程為,根據(jù)與圓相切可得,再聯(lián)立拋物線的方程,根據(jù)判別式大于0可得,再結(jié)合求解的取值范圍即可.

(2) 設(shè),聯(lián)立直線與拋物線的方程,代入韋達(dá)定理化簡(jiǎn),結(jié)合(1)可得關(guān)于的方程求解即可.

1)設(shè)直線的方程為,

的圓心為,半徑為1.

由直線與圓相切得:,化簡(jiǎn)得,

直線的方程代入拋物線,消去得:,

由直線與拋物線相交于A,B兩點(diǎn),得,

代入不等式,得,

注意到

綜上知,c的取值范圍是

2)設(shè)

代入上式,

,得

所以,

解得(舍去),-

所以直線的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的右焦點(diǎn)為,左頂點(diǎn)為,線段的中點(diǎn)為,圓過(guò)點(diǎn),且與交于是等腰直角三角形,則圓的標(biāo)準(zhǔn)方程是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)是茶的故鄉(xiāng),也是茶文化的發(fā)源地.中國(guó)茶的發(fā)現(xiàn)和利用已有四千七百多年的歷史,且長(zhǎng)盛不衰,傳遍全球.為了弘揚(yáng)中國(guó)茶文化,某酒店推出特色茶食品金萱排骨茶,為了解每壺金萱排骨茶中所放茶葉量克與食客的滿意率的關(guān)系,通過(guò)試驗(yàn)調(diào)查研究,發(fā)現(xiàn)可選擇函數(shù)模型來(lái)擬合的關(guān)系,根據(jù)以下數(shù)據(jù):

茶葉量

1

2

3

4

5

4.34

4.36

4.44

4.45

4.51

可求得y關(guān)于x的回歸方程為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某化工廠在定期檢修設(shè)備時(shí)發(fā)現(xiàn)生產(chǎn)管道中共有5處閥門()發(fā)生有害氣體泄漏.每處閥門在每小時(shí)內(nèi)有害氣體的泄露量大體相等,約為0.01立方米.閥門的修復(fù)工作可在不停產(chǎn)的情況下實(shí)施.由于各閥門所處的位置不同,因此修復(fù)所需的時(shí)間不同,且修復(fù)時(shí)必須遵從一定的順序關(guān)系,具體情況如下表:

泄露閥門

修復(fù)時(shí)間

(小時(shí))

11

8

5

9

6

需先修復(fù)

好的閥門

在只有一個(gè)閥門修復(fù)設(shè)備的情況下,合理安排修復(fù)順序,泄露的有害氣體總量最小為(

A.1.14立方米B.1.07立方米C.1.04立方米D.0.39立方米

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線過(guò)定點(diǎn),圓.在圓上任取一點(diǎn)P,連接,在上取點(diǎn)M,使得是以為底的等腰三角形.

1)求點(diǎn)M的軌跡方程;

2)過(guò)點(diǎn)的直線與點(diǎn)M的軌跡交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將數(shù)字1,23,4,5這五個(gè)數(shù)隨機(jī)排成一列組成一個(gè)數(shù)列,則該數(shù)列為先減后增數(shù)列的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,由經(jīng)過(guò)伸縮變換得到曲線,以原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線的極坐標(biāo)方程以及曲線的直角坐標(biāo)方程;

(2)若直線的極坐標(biāo)方程為,與曲線、曲線在第一象限交于,且,點(diǎn)的極坐標(biāo)為,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某街道居委會(huì)擬在地段的居民樓正南方向的空白地段上建一個(gè)活動(dòng)中心,其中米.活動(dòng)中心東西走向,與居民樓平行. 從東向西看活動(dòng)中心的截面圖的下部分是長(zhǎng)方形,上部分是以為直徑的半圓. 為了保證居民樓住戶的采光要求,活動(dòng)中心在與半圓相切的太陽(yáng)光線照射下落在居民樓上的影長(zhǎng)不超過(guò)米,其中該太陽(yáng)光線與水平線的夾角滿足.

1)若設(shè)計(jì)米,米,問(wèn)能否保證上述采光要求?

2)在保證上述采光要求的前提下,如何設(shè)計(jì)的長(zhǎng)度,可使得活動(dòng)中心的截面面積最大?(注:計(jì)算中3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且其離心率為,過(guò)坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別相交于,兩點(diǎn).

1)求橢圓的方程;

2)是否存在圓心在原點(diǎn)的定圓與直線總相切?若存在,求定圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案