在空間四邊形ABCD中,M,N分別為 BC,CD的中點,O為BD的中點,且AB=BC=CD=DA,求證:MN⊥平面AOC.
考點:直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:利用三角形中位線性質(zhì),得到MN∥BD,只要再判斷BD與平面AOC垂直即可.
解答: 證明:如圖
因為M,N分別為 BC,CD的中點,
所以MN∥BD,
因為O為BD的中點,且AB=BC=CD=DA,
所以BD⊥OA,BD⊥OC,
所以BD⊥平面AOC,
所以MN⊥平面AOC.
點評:本題考查了線面垂直的判定定理的運用,熟練線面垂直的判定定理是關(guān)鍵,屬于基礎(chǔ)題;
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

向邊長為1的正方形內(nèi)隨機拋擲一粒芝麻,則芝麻落在正方形中心和芝麻不落在正方形中心的概率分別為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為菱形,ACFE為平行四邊形,且面ACFE⊥面ABCD,AB=BD=2,AE=
3
,設(shè)BD與AC相交于點G,H為FG的中點.
(Ⅰ)證明:CH⊥面BFD;
(Ⅱ)若CH=
3
2
,求EF與面EDB所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx-x+
1
x

(1)判斷函數(shù)f(x)的單調(diào)性;
(2)證明:當x>0時,ln(1+
1
x
)<
1
x2+x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
ax
1+ax
(a>0a≠1),其中[m]表示不超過m的最大整數(shù),如[4.1]=4,則函數(shù)y=[f(x)-
1
2
]+[f(-x)-
1
2
]的值域是( 。
A、{0,1}
B、{-1,1}
C、{-1,0}
D、{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-7,0),B(7,0),C(2,-12),橢圓過A、B兩點且以C為其一個焦點,求橢圓另一個焦點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個定點坐標分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點任意一點到兩定點的距離之差的絕對值等于2
5

(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點,求△ABF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=(2x-1)2在x=3處的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式:
(1)0<x2-x-2≤4;
(2)x2-4ax-5a2>0(a≠0).

查看答案和解析>>

同步練習冊答案