a=0.90.9,b=0.93.1,c=0.9-1.5的大小關系是( 。
A、c<b<a
B、a<b<c
C、c<a<b
D、b<a<c
考點:指數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)指數(shù)函數(shù)y=0.9x為減函數(shù),比較三個指數(shù)的大小,可得三個數(shù)的大小關系.
解答: 解:∵函數(shù)y=0.9x為減函數(shù),
又∵-1.5<0.9<3.1,
∴0.93.1<0.90.9<0.9-1.5,
即b<a<c,
故選:D
點評:本題考查的知識點是指數(shù)函數(shù)的單調(diào)性,熟練掌握指數(shù)函數(shù)的單調(diào)性是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

方程
x|x|
16
+
y|y|
9
=-1的曲線即為函數(shù)y=f(x)的圖象,對于函數(shù)y=f(x),有如下結論:
①f(x)在R上單調(diào)遞減;
②函數(shù)F(x)=4f(x)+3x不存在零點;
③函數(shù)y=f(x)的值域是R;
④若函數(shù)g(x)和f(x)的圖象關于原點對稱,則函數(shù)y=g(x)的圖象就是方程
y|y|
16
+
x|x|
9
=1確定的曲線.
其中所有正確的命題序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)既是偶函數(shù),又在(0,+∞)上為增函數(shù)的是( 。
A、y=ex
B、y=x 
1
2
C、y=x3
D、y=|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線a,b和平面α,β,γ,可以使α⊥β成立的條件是( 。
A、a?α,b?β,a⊥b
B、a∥α,b∥β且a⊥b
C、a⊥α,b⊥β且a⊥b
D、α⊥γ,β⊥γ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
|lg|x||,(x≠0)
0,(x=0)
,則方程f2(x)-f(x)=0的實根共有( 。
A、5個B、6個C、7個D、8個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x2在區(qū)間[-1,2]上( 。
A、是增函數(shù)
B、是減函數(shù)
C、既是增函數(shù)又是減函數(shù)
D、不具有單調(diào)性

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于函數(shù)f(x)=|x2-1|,給出下列結論:
①f(x)是偶函數(shù);
②若函數(shù)y=f(x)-m有四個零點,則實數(shù)m的取值范圍是(0,1);
③f(x)在區(qū)間(0,+∞)內(nèi)單調(diào)遞增;
④若f(a)=f(b)(0<a<b),則0<ab<1.
其中正確的是( 。
A、①②B、③④
C、①③④D、①②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=
x
x2+1
,則f(
1
x
)是(  )
A、f(x)
B、-f(x)
C、
1
f(x)
D、
1
f(-x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在邊長為2的正方形內(nèi)隨機抽取一個點,則此點在正方形的內(nèi)切圓內(nèi)部的概率為( 。
A、
π
4
B、
4-π
4
C、
π-1
4
D、
4-π
π

查看答案和解析>>

同步練習冊答案