若函數(shù)f(x)=
ax+b
1+x2
是定義在(-1,1)上的奇函數(shù),且f(2)=
2
5

(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求滿足f(t-1)+f(t)<0的t的取值范圍.
考點:奇偶性與單調性的綜合
專題:綜合題,函數(shù)的性質及應用
分析:(I)依題意f(0)=0,可求得b,再由f(2)=
2
5
可求得a,從而可得函數(shù)f(x)的解析式;
(Ⅱ)由(I)可求得函數(shù)f(x)的解析式,利用奇函數(shù)f(x)在(-1,1)上的單調遞增即可求得f(t-1)+f(t)<0的t的范圍.
解答: 解:(I)∵f(x)是定義在(-1,1)上的奇函數(shù),
∴f(0)=0,解得b=0,…1分
則f(x)=
ax
1+x2
,
∴f(2)=
2a
1+4
=
2
5

∴a=1…4分
∴函數(shù)的解析式為:f(x)=
x
1+x2
(-1<x<1)…6分
(Ⅱ)∵f(t-1)+f(t)<0,
∴f(t-1)<-f(t),
∵f(-t)=-f(t),
∴f(t-1)<f(-t),…8分
又∵f(x)在(-1,1)上是增函數(shù),
∴-1<t-1<-t<1,
∴0<t<
1
2
…12分
點評:本題考查函數(shù)解析式的求解,考查函數(shù)的奇偶性與單調性的應用,考查分析與運算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知曲線C1
x=2cosθ
y=3sinθ
(θ為參數(shù)),曲線C2
x=
2
2
t
y=-6+
2
2
t
 (t為參數(shù)).
(1)分別將曲線C1與曲線C2化為普通方程.
(2)點P是曲線C1上的動點,求P到曲線C2的距離的最小值,并求此時點P點的直角坐標系下的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)對任意實數(shù)x,y都有f(xy)=f(x)+f(y)成立.
(1)求f(0)和f(1)的值.
(2)若f(2)=a,f(3)=b(a,b均為常數(shù)),求f(36)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,∠BAC=90°,AA1⊥平面ABC,D、E分別為A1B1、AA1的中點,點F在棱AB上,且AF=
1
4
AB.
(Ⅰ)求證:EF∥平面BDC1;
(Ⅱ)在棱AC上是否存在一個點G,使得平面EFG將三棱柱分割成的兩部分體積之比為1:31,若存在,指出點G的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程x2+y2-2x+2my+m2-2m-2=0(m∈R).
(1)若方程表示圓,求實數(shù)m的取值范圍;
(2)若方程表示的圓C的圓心C(1,1),求經過P(2,4)的圓C的切線方程;
(3)若直線x+y+t=0與(2)中的圓C交于A、B兩點,且△ABC是直角三角形,求實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設有兩個命題,命題p:?x∈(1,
5
2
)使函數(shù)g(x)=log2(ax2+2x-2)有意義;命題q:已知函數(shù)f(x)=mx3+nx2的圖象在點(-1,2)處的切線恰好與直線2x+y=1平行,且f(x)在[a,a+1]上單調遞減.若命題p或q為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率是
2
2
,且點P(1,
2
2
)在橢圓上.
(1)求橢圓的方程;
(2)若過點D(0,2)的直線l與橢圓C交于不同的兩點E,F(xiàn),試求△OEF面積的取值范圍(O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知扇形的圓心角為
2
5
π,半徑為5cm,則扇形的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,a=8,b=2
3
,角C=30°,則c邊等于
 

查看答案和解析>>

同步練習冊答案