已知函數(shù)f(x)=
3
sinωx+cosωx(ω>0)的圖象與直線y=-2的兩個(gè)相鄰公共點(diǎn)之間的距離等于π,則f(x)的單調(diào)遞減區(qū)間是( 。
A、[kπ+
π
6
,kπ+
3
],k∈z
B、[kπ-
π
3
,kπ+
π
6
],k∈z
C、[2kπ+
π
3
,2kπ+
3
],k∈z
D、[2kπ-
π
12
,2kπ+
12
],k∈z
考點(diǎn):正弦函數(shù)的圖象,兩角和與差的正弦函數(shù),正弦函數(shù)的單調(diào)性
專題:三角函數(shù)的圖像與性質(zhì)
分析:先利用兩角和公式對(duì)函數(shù)解析式化簡,根據(jù)題意求得周期,進(jìn)而求得ω,函數(shù)的解析式可得,最后利用正弦函數(shù)的單調(diào)性求得函數(shù)的單調(diào)減區(qū)間.
解答: 解:f(x)=2(
3
2
sinωx+
1
2
cosωx)=2sin(ωx+
π
6
),
依題意知函數(shù)的周期為T=
ω
=π,
∴ω=2,
∴f(x)=2sin(2x+
π
6
),
由2kπ+
π
2
≤2x+
π
6
≤2kπ+
2
,得kπ+
π
6
≤x≤kπ+
π
3
,k∈Z,
∴f(x)的單調(diào)遞減區(qū)間是[kπ+
π
6
,kπ+
π
3
](k∈Z),
故選A.
點(diǎn)評(píng):本題主要考查了兩角和與差的正弦函數(shù),三角函數(shù)圖象與性質(zhì).求得函數(shù)的解析式是解決問題的基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)a與b滿足
 
條件時(shí),(a-2b)2≥1成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題
①已知函數(shù)f(x+1)=x2,則f(e)=(e-1)2;
②函數(shù)f(x)的值域?yàn)椋?2,2),則函數(shù)f(x+2)的值域?yàn)椋?4,0);
③函數(shù)y=2x(x∈N)的圖象是一直線;
④已知f(x)、g(x)是定義在R上的兩個(gè)函數(shù),對(duì)任意x、y∈R滿足關(guān)系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時(shí)f(x)•g(x)≠0則函數(shù)f(x)、g(x)都是奇函數(shù).
其中錯(cuò)誤的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=x+m與曲線x=
1-y2
只有一個(gè)公共點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A、m=±
2
B、m≥
2
或m≤-
2
C、-
2
<m<
2
D、-1<m≤1或m=-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=tanωx(ω>0)的圖象的相鄰兩支曲線截直線y=2所得的線段長為
π
8
,則f(
π
12
)的值是(  )
A、
3
3
B、1
C、-1
D、-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:(x+
5
2+y2=36,定點(diǎn)N(
5
,0),點(diǎn)P為圓M上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在線段MP上,且滿足
NP
=2
NQ
,
GQ
NP
=0,則點(diǎn)G的軌跡方程為( 。
A、
x2
9
+
y2
4
=1
B、
x2
36
+
y2
31
=1
C、
x2
9
-
y2
4
=1
D、
x2
36
-
y2
31
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,BB1與平面ACD1所成角的正弦值為(  )
A、
2
3
B、
3
3
C、
2
3
D、
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知3≤x≤6,
1
3
x≤y≤2x,則x+y的最大值和最小值分別是( 。
A、4,18B、4,8
C、18,4D、8,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC為銳角三角形,若角θ終邊上一點(diǎn)P的坐標(biāo)為(sinA-cosB,cosA-sinC),則f(θ)=
sin(θ+
π
2
)
|cosθ|
+
cos(θ+
π
2
)
|sinθ|
的值為( 。
A、-2B、0
C、2D、與θ的大小有關(guān)

查看答案和解析>>

同步練習(xí)冊(cè)答案