|
|
若實數(shù)t滿足f(t)=-t,則稱t是函數(shù)f(x)的一個次不動點.設(shè)函數(shù)f(x)=lnx與函數(shù)g(x)=ex(其中e為自然對數(shù)的底數(shù))的所有次不動點之和為m,則
|
[ ] |
A. |
m<0
|
B. |
m=0
|
C. |
0<m<1
|
D. |
m>1
|
|
|
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
一個空間幾何體的三視圖如圖所示,且這個空間幾何體的所有頂點都在一個球面上,則這個球的表面積是
|
[ ] |
A. |
4π
|
B. |
8π
|
C. |
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)隨機變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=
|
[ ] |
A. |
|
B. |
1-p
|
C. |
1-2p
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知函數(shù)f(x)=ln(ex+a)(e為常數(shù))是R上的奇函數(shù),函數(shù)g(x)=λf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
(Ⅰ)求a的值;
(Ⅱ)若g(x)<t2+λt+1在x∈[-1,1]上恒成立,求t的取值范圍;
(Ⅲ)討論關(guān)于x的方程的根的個數(shù).
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
若空間三條直線a、b、c滿足a⊥b,b∥c,則直線a與c
|
[ ] |
A. |
一定平行
|
B. |
一定相交
|
C. |
一定是異面直線
|
D. |
一定垂直
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
平面向量與的夾角為60°,=(2,0),||=1,則|+2|=
|
[ ] |
A. |
|
B. |
|
C. |
4
|
D. |
12
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知數(shù)列{an}有a1=a,a2=p(常數(shù)p>0),對任意的正整數(shù)n,Sn=a1+a2+…+an,并有Sn滿足.
(Ⅰ)求a的值并證明數(shù)列{an}為等差數(shù)列;
(Ⅱ)令,是否存在正整數(shù)M,使不等式p1+p2+…+pn-2n≤M恒成立,若存在,求出M的最小值,若不存在,說明理由.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
高和底面圓直徑均為2的圓柱被沿平面ACD和平面BCD從頂部斜切掉兩塊,如圖所示,CD和AB分別是圓柱上、下底面圓的直徑,AB上CD,且四邊形CDEF為正方形.
(Ⅰ)求證:平面ABD⊥平面CDEF;
(Ⅱ)求多面體CDAEBF的體積.
|
|
|
查看答案和解析>>