設(shè)偶函數(shù)y=f(x),對(duì)任意實(shí)數(shù)x∈R都有f(x)=f(x+4),當(dāng)x∈[0,4]時(shí),函數(shù)f(x)=ax2+x+b2-b-
11
4
(a∈R,b∈R),且當(dāng)x∈[0,1]時(shí),f(x)<0恒成立,則b的取值范圍是
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知可得f(0)=f(4),解得a,再利用二次函數(shù)的單調(diào)性與當(dāng)x∈[0,1]時(shí),f(x)<0恒成立,即可得出.
解答: 解:∵對(duì)任意實(shí)數(shù)x∈R都有f(x)=f(x+4),當(dāng)x∈[0,4]時(shí),函數(shù)f(x)=ax2+x+b2-b-
11
4

∴f(0)=f(4),解得a=-
1
4

代入有f(x)=-
1
4
x2+x+b2-b-
11
4

∵當(dāng)x∈[0,1]時(shí),f(x)<0恒成立,
∴f(1)<0,化為
3
4
+b2-b-
11
4
<0,即b2-b-2<0,解得-1<b<2.
故答案為:(-1,2).
點(diǎn)評(píng):本題考查了二次函數(shù)的單調(diào)性、函數(shù)的周期性,考查了推理能力與計(jì)算能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且
cosB
cosC
=
b
2a+c

(1)求角B;
(2)若b=
13
,a+c=4,求邊a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F1、F2分別為
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn),P為雙曲線(xiàn)左支上的任意一點(diǎn),若
|PF2|2
|PF1|
的最小值為9a,則這個(gè)雙曲線(xiàn)的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若t2+4t<mt,t∈[1,4],求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓C:x2+y2-4=0被直線(xiàn)l:x-y+2=0截得的弦長(zhǎng)為( 。
A、2
2
B、
2
C、
3
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線(xiàn)
x2
a2
-
y2
b2
=1
(a>0,b>0)的漸近線(xiàn)均與x2+y2-4x+1=0相切,則該雙曲線(xiàn)離心率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b為兩異面直線(xiàn),OA∥a,OB∥b,若∠AOB=150°,則a,b所成的角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
y2
a2
+
x2
b2
=1(a>b>0)經(jīng)過(guò)點(diǎn)(
3
2
,1)
,一個(gè)焦點(diǎn)是F(0,1).
(1)求橢圓C的方程;
(2)若傾斜角為
π
4
的直線(xiàn)l與橢圓C交于A、B兩點(diǎn),且|AB|=
12
2
7
,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-6x+4lnx+a(x>0),若方程f(x)=0有兩個(gè)不同的實(shí)根,則實(shí)數(shù)a的值為( 。
A、a=5或a=8-4ln2
B、a=5或a=8+4ln2
C、a=-5或a=8-4ln2
D、a=5或a=8-4ln3

查看答案和解析>>

同步練習(xí)冊(cè)答案