如圖,點D在⊙O的弦AB上移動,AB=4,連接OD,過點D作OD的垂線交⊙O于點C,則CD的最大值為         .
2
由于OD⊥CD,因此CD=,線段OC長為定值,即需求解線段OD長度的最小值,根據(jù)弦中點到圓心的距離最短,此時D為AB的中點,點C與點B重合,因此|CD|=|AB|=2.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知為半圓的直徑,,為半圓上一點,過點作半圓的切線,過點作,交半圓于點,

(1)證明:平分;
(2)求的長.                  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,圓的兩弦交于點,,的延長線于點.求證:△∽△

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,BE是角平分線,DE⊥BE交AB于D,圓O是△BDE的外接圓.

(1)求證:AC是圓O的切線;
(2)如果AD=6,AE=6,求BC的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠B=90°,以AB為直徑的圓O交AC于D,過點D作圓O的切線交BC于E,AE交圓O于點F.求證:

(1)E是BC的中點;
(2)AD·AC=AE·AF.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知圓O外有一點P,作圓O的切線PM,M為切點,過PM的中點N,作割線NAB,交圓于A、B兩點,連接PA并延長,交圓O于點C,連接PB交圓O于點D,若MC=BC.

(1)求證:△APM∽△ABP;
(2)求證:四邊形PMCD是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,已知在?ABCD中,O1,O2,O3為對角線BD上三點,且BO1=O1O2=O2O3=O3D,連接AO1并延長交BC于點E,連接EO3并延長交AD于F,則AD∶FD等于(  )
A.19∶2B.9∶1
C.8∶1D.7∶1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,AB是半圓O的直徑,C是半圓O上異于A,B的點,CD⊥AB,垂足為D,已知AD=2,CB=4,則CD=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,梯形ABCD中,AD∥BC,EF是中位線,BD交EF于P,已知EP∶PF=1∶2,AD=7cm,求BC的長.

查看答案和解析>>

同步練習冊答案