已知為橢圓的左右焦點(diǎn),是坐標(biāo)原點(diǎn),過作垂直于軸的直線交橢圓于,設(shè) .
(1)證明: 成等比數(shù)列;
(2)若的坐標(biāo)為,求橢圓的方程;
(3)在(2)的橢圓中,過的直線與橢圓交于、兩點(diǎn),若,求直線的方程.
(1)詳見解析;(2);(3)
【解析】
試題分析:(1)由條件知M點(diǎn)的坐標(biāo)為(c,y0),其中|y0|=d,知,d=b•=,由此能證明d,b,a成等比數(shù)列.
(2)由條件知c=,d=1,知b2=a?1,a2=b2+2,由此能求出橢圓方程.
(3)設(shè)點(diǎn)A(x1,y1)、B(x2,y2),當(dāng)l⊥x軸時(shí),A(-,-1)、B(-,1),所以≠0. 設(shè)直線的方程為y=k(x+),代入橢圓方程得(1+2k2)x2+4k2x+4k2?4=0再由韋達(dá)定理能夠推導(dǎo)出直線的方程.
試題解析:(1)證明:由條件知M點(diǎn)的坐標(biāo)為,其中,
, ,即成等比數(shù)列. 3分
(2)由條件知,橢圓方程為 6分
(3)設(shè)點(diǎn)A(x1,y1)、B(x2,y2),當(dāng)l⊥x軸時(shí),A(-,-1)、B(-,1),所以≠0. 設(shè)直線的方程為y=k(x+),代入橢圓方程得(1+2k2)x2+4k2x+4k2?4=0所以 ①由得
整理后把①式代入解得k=,
所以直線l的方程為.
考點(diǎn):數(shù)列與解析幾何的綜合.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆北京東城(南片)高二上學(xué)期期末考試?yán)頂?shù)學(xué)試卷(解析版) 題型:選擇題
用輾轉(zhuǎn)相除法求294和84的最大公約數(shù)時(shí),需要做除法的次數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆北京東城區(qū)高二第一學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知向量,,且,那么等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆北京東城區(qū)高二第一學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
若函數(shù)在內(nèi)單調(diào)遞增,則的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆北京東城區(qū)高二第一學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,函數(shù)在,兩點(diǎn)間的平均變化率是( )
A.1 B. C.2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆云南玉溪一中高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
的內(nèi)角的對邊分別為,若,則=______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆云南玉溪一中高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知四棱錐的三視圖如圖,則四棱錐的全面積為( )
A. B.
C.5 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆云南玉溪一中高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)的周期為2,當(dāng),如果,則函數(shù)的所有零點(diǎn)之和為( )
A.2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)真題感悟?紗栴}7練習(xí)卷(解析版) 題型:填空題
如圖,在△ABC中,已知點(diǎn)D在BC邊上,AD⊥AC,sin∠BAC=,AB=3,AD=3,則BD的長為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com