某家電生產(chǎn)企業(yè)根據(jù)市場(chǎng)調(diào)查分析,決定調(diào)整產(chǎn)品生產(chǎn)方案,準(zhǔn)備每周(按120個(gè)工時(shí)計(jì)算)生產(chǎn)空調(diào)器、彩電、冰箱共360臺(tái),且冰箱至少生產(chǎn)60臺(tái). 已知生產(chǎn)家電產(chǎn)品每臺(tái)所需工時(shí)和每臺(tái)產(chǎn)值如下表:
家電名稱
空調(diào)器
彩電
冰箱
工時(shí)



產(chǎn)值(千元)
4
3
2
問每周應(yīng)生產(chǎn)空調(diào)器、彩電、冰箱各多少臺(tái),才能使產(chǎn)值最高?最高產(chǎn)值是多少?(以千元為單位)
每周應(yīng)生產(chǎn)空調(diào)器30臺(tái),彩電270臺(tái),冰箱60臺(tái),才能使產(chǎn)值最大,最大產(chǎn)值為1050千元.
設(shè)每周生產(chǎn)空調(diào)器、彩電、冰箱分別為x臺(tái)、y臺(tái)、z臺(tái),由題意得: 
x+y+z="360                                               "   ①          
                                、
x>0,y>0,z≥60.                                         ③
假定每周總產(chǎn)值為S千元,則S=4x+3y+2z,在限制條件①②③之下,為求目標(biāo)函數(shù)S的最大值,由①②消去z,得
y=360-3x.                     、
將④代入①得: x+(360-3x)+z=360,∴z=2x   ⑤
z≥60,∴x≥30.                                               ⑥
再將④⑤代入S中,得S=4x+3(360-3x)+2·2x,即S=-x+1080. 
由條件⑥及上式知,當(dāng)x=30時(shí),產(chǎn)值S最大,最大值為
S=-30+1080=1050(千元).
x=30分別代入④和⑤得y=360-90=270,z=2×30=60.
∴每周應(yīng)生產(chǎn)空調(diào)器30臺(tái),彩電270臺(tái),冰箱60臺(tái),才能使產(chǎn)值最大,最大產(chǎn)值為1050千元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),設(shè)h(x)=f(x)-g(x).
(1)求函數(shù)h(x)的定義域;
(2)判斷h(x)的奇偶性,并說明理由;
(3)若f(3)=2,求使h(x)>0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)求f()+f(-)的值;  
(2)當(dāng)x∈ (其中a∈(0, 1), 且a為常數(shù))時(shí),
f(x)是否存在最小值, 若存在, 求出最小值; 若不存在, 請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)=lg(x+1),g(x)=2lg(2x+t),(t∈R是參數(shù)).
(1)當(dāng)t=–1時(shí),解不等式f(x)≤g(x);
(2)如果x∈[0,1]時(shí),f(x)≤g(x)恒成立,求參數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)在月份,有一新款服裝投入某商場(chǎng)銷售,日該款服裝僅銷售出件,第二天售出件,第三天銷售件,然后,每天售出的件數(shù)分別遞增件,直到日銷售量達(dá)到最大后,每天銷售的件數(shù)分別遞減件,到月底該服裝共銷售出件.(Ⅰ)問月幾號(hào)該款服裝銷售件數(shù)最多?其最大值是多少?(Ⅱ)按規(guī)律,當(dāng)該商場(chǎng)銷售此服裝超過件時(shí),社會(huì)上就流行,而日銷售量連續(xù)下降,并低于件時(shí),則流行消失,問該款服裝在社會(huì)上流行是否超過天?并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)=.
(1)證明:f(x)在其定義域上的單調(diào)性;
(2)證明: 方程f-1(x)=0有惟一解;
(3)解不等式fx(x)]<.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知是定義域?yàn)閇-3,3]的函數(shù),并且設(shè),,其中常數(shù)c為實(shí)數(shù).(1)求的定義域;(2)如果兩個(gè)函數(shù)的定義域的交集為非空集合,求c的取值范圍;(3)當(dāng)在其定義域內(nèi)是奇函數(shù),又是增函數(shù)時(shí),求使的自變量的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)對(duì)于任意實(shí)數(shù)滿足條件,若__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是R上的減函數(shù),并且的圖像經(jīng)過點(diǎn)A(0,3)和B (3,-1),則不等式的解集是______________。

查看答案和解析>>

同步練習(xí)冊(cè)答案