【題目】已知橢圓的離心率為,其左、右焦點分別為,左、右頂點分別為,上、下頂點分別為,四邊形與四邊形的面積之和為4.
(1)求橢圓的方程;
(2)直線與橢圓交于兩點,(其中為坐標(biāo)原點),求直線被以線段為直徑的圓截得的弦長.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex(其中e為自然對數(shù)的底數(shù)),g(x)= x+m(m,n∈R).
(1)若T(x)=f(x)g(x),m=1﹣,求T(x)在[0,1]上的最大值;
(2)若m=﹣,n∈N*,求使f(x)的圖象恒在g(x)圖象上方的最大正整數(shù)n.[注意:7<e2<].
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1 , 設(shè)AB1的中點為D,B1C∩BC1=E.
求證:
(1)DE∥平面AA1C1C;
(2)BC1⊥AB1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的方程為,過點的一條直線與拋物線交于兩點,若拋物線在兩點的切線交于點.
(1)求點的軌跡方程;
(2)設(shè)直線與直線的夾角為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,若a1=1,anan+1=( )n﹣2 , 則滿足不等式 + + +…+ + <2016的正整數(shù)n的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)求回歸直線方程;
(2)試預(yù)測廣告費支出為10萬元時,銷售額多大?
(3)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預(yù)測值與實際值之差的絕對值不超過5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017重慶二診】已知橢圓: 的左頂點為,右焦點為,過點且斜率為1的直線交橢圓于另一點,交軸于點, .
(1)求橢圓的方程;
(2)過點作直線與橢圓交于兩點,連接(為坐標(biāo)原點)并延長交橢圓于點,求面積的最大值及取最大值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為備戰(zhàn)年瑞典乒乓球世界錦標(biāo)賽,乒乓球隊舉行公開選撥賽,甲、乙、丙三名選手入圍最終單打比賽名單.現(xiàn)甲、乙、丙三人進行隊內(nèi)單打?qū)贡荣悾績扇吮荣愐粓,共賽三?/span>,每場比賽勝者得分,負(fù)者得分,在每一場比賽中,甲勝乙的概率為,丙勝甲的概率為,乙勝丙的概率為,且各場比賽結(jié)果互不影響.若甲獲第一名且乙獲第三名的概率為.
(Ⅰ)求的值;
(Ⅱ)設(shè)在該次對抗比賽中,丙得分為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com