給定函數(shù):①y=,②y=(x+1),③y=|x-1|,④y=2x+1,其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)是____________.(填序號)
②③
①是冪函數(shù),其在(0,+∞)上是增函數(shù),不符合;②中的函數(shù)是由函數(shù)y=x向左平移1個單位而得到的,因為原函數(shù)在(0,+∞)上是減函數(shù),故符合;③中的函數(shù)圖象是由函數(shù)y=x-1的圖象保留x軸上方,下方圖象翻折到x軸上方而得到的,故由其圖象可知正確;④中函數(shù)顯然是增函數(shù),故不符合.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知y=f(x)是定義在(-2,2)上的增函數(shù),若f(m-1)<f(1-2m),則實數(shù)m的取值范圍為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)是定義在R上的偶函數(shù), 且在區(qū)間單調(diào)遞增.若實數(shù)滿足,則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)函數(shù)f(x)=.
(1)求a、b的值及函數(shù)f(x)的解析式;
(2)若不等式f(2x)-k·2x≥0在x∈[-1,1]時有解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知奇函數(shù)f(x)的定義域為[-2,2],且在區(qū)間[-2,0]內(nèi)遞減,若f(1-m)+f(1-m2)<0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2x-,x∈(0,1].
(1)當a=-1時,求函數(shù)y=f(x)的值域;
(2)若函數(shù)y=f(x)在x∈(0,1]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)y=1-的最大值與最小值的和為    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)f(x)是連續(xù)的偶函數(shù),且當x>0時是單調(diào)函數(shù),則滿足f(2x)=f()的所有x之和為(  )
A.-B.-C.-8D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)g(x)是定義在R上以1為周期的函數(shù),若函數(shù)f(x)=x+g(x)在區(qū)間[3,4]時的值域為[-2,5],則f(x)在區(qū)間[2,5]上的值域為________.

查看答案和解析>>

同步練習(xí)冊答案