在平面直角坐標(biāo)系中,已知橢圓.如圖所示,斜率為且不過原點的直線交橢圓,兩點,線段的中點為,射線交橢圓于點,交直線于點.
(Ⅰ)求的最小值;
(Ⅱ)若?,(i)求證:直線過定點;
(ii)試問點,能否關(guān)于軸對稱?若能,求出此時的外接圓方程;若不能,請說明理由.
(1)2      (2)
(Ⅰ)由題意:設(shè)直線,
消y得:,設(shè)A、B,AB的中點E,則由韋達定理得: =,即,,所以中點E的坐標(biāo)為E,因為O、E、D三點在同一直線上,所以,即,解得
,所以=,當(dāng)且僅當(dāng)時取等號,即的最小值為2.
(Ⅱ)(i)證明:由題意知:n>0,因為直線OD的方程為,所以由得交點G的縱坐標(biāo)為,又因為,,且?,所以,又由(Ⅰ)知: ,所以解得,所以直線的方程為,即有,令得,y=0,與實數(shù)k無關(guān),所以直線過定點(-1,0).
(ii)假設(shè)點關(guān)于軸對稱,則有的外接圓的圓心在x軸上,又在線段AB的中垂線上,
由(i)知點G(,所以點B(,又因為直線過定點(-1,0),所以直線的斜率為,又因為,所以解得或6,又因為,所以舍去,即,此時k=1,m=1,E,AB的中垂線為2x+2y+1=0,圓心坐標(biāo)為,G(,圓半徑為,圓的方程為.綜上所述, 點關(guān)于軸對稱,此時的外接圓的方程為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)
已知F是橢圓=1的右焦點,點P是橢圓上的動點,點Q是圓上的動點.
(1)試判斷以PF為直徑的圓與圓的位置關(guān)系;
(2)在x軸上能否找到一定點M,使得=e (e為橢圓的離心率)?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)已知A(1,1)是橢圓)上一點,F1­,F(xiàn)2
 
是橢圓上的兩焦點,且滿足 .
(I)求橢圓方程;
(Ⅱ)設(shè)C,D是橢圓上任兩點,且直線AC,AD的斜率分別為  ,若存在常數(shù) 使/,求直線CD的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知分別是橢圓的左、右 焦點,已知點 滿足,且。設(shè)是上半橢圓上且滿足的兩點。
(1)求此橢圓的方程;
(2)若,求直線AB的斜率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓:的左右焦點分別為,離心率為,兩焦點與上下頂點形成的菱形面積為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線與橢圓交于A, B兩點,四邊形為平行四邊形,為坐標(biāo)原點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知,分別是橢圓)的左、右焦點,且橢圓的離心率也是拋物線的焦點.

(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線交橢圓兩點,且,點關(guān)于軸的對稱點為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓左焦點且傾斜角為的直線交橢圓于兩點,若,則橢圓的離心率等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在圓上任取一點,過點軸的垂線段,為垂足.當(dāng)點在圓上運動時,線段的中點形成軌跡
(1)求軌跡的方程;
(2)若直線與曲線交于兩點,為曲線上一動點,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若AB是過二次曲線中心的任一條弦,M是二次曲線上異于A、B的任一點,且AM、BM均與坐標(biāo)軸不平行,則對于橢圓。類似地,對于雙曲線=         。

查看答案和解析>>

同步練習(xí)冊答案