【題目】已知,正方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn)分別為D1C1,C1B1的中點(diǎn),

AC∩BD=P,A1C1∩EF=Q.求證:

(1)D,B,E,F(xiàn)四點(diǎn)共面.

(2)若A1C交平面BDEF于點(diǎn)R,則P,Q,R三點(diǎn)共線.

【答案】詳見解析

【解析】試題分析:(1)利用EF∥BD確定平面即可;(2)利用公理2說明三點(diǎn)在兩個平面的交線上即可.

試題解析:

(1)連接B1D1.因?yàn)镋,F(xiàn)分別為D1C1,C1B1的中點(diǎn),所以EF∥B1D1,又因?yàn)锽1D1∥BD,

所以EF∥BD,所以EF與BD共面,

所以E,F(xiàn),B,D四點(diǎn)共面.

(2)因?yàn)锳C∩BD=P,所以P∈平面AA1C1C∩平面BDEF.

同理,Q∈平面AA1C1C∩平面BDEF,

因?yàn)锳1C∩平面DBFE=R,

所以R∈平面AA1C1C∩平面BDEF,

所以P,Q,R三點(diǎn)共線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=-x+5的傾斜角是直線l的傾斜角的大小的5倍,分別求滿足下列條件的直線l的方程.

(1)過點(diǎn)P(3,-4);

(2)在x軸上截距為-2;

(3)在y軸上截距為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為 ,(t為參數(shù)),直線l2的參數(shù)方程為 ,(m為參數(shù)).設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時,P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ)﹣ =0,M為l3與C的交點(diǎn),求M的極徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的公差d>0,且a1>0,記Tn= + ++
(1)用a1、d分別表示T1、T2、T3 , 并猜想Tn;
(2)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中為了解高中學(xué)生的性別和喜歡打籃球是否有關(guān),對50名高中學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡打籃球

不喜歡打籃球

合計

男生

5

女生

10

合計

已知在這50人中隨機(jī)抽取1人,抽到喜歡打籃球的學(xué)生的概率為
(Ⅰ)請將上述列聯(lián)表補(bǔ)充完整;
(Ⅱ)判斷是否有99.5%的把握認(rèn)為喜歡打籃球與性別有關(guān)?
附:K2=

p(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA⊥平面ABC,AE⊥PB,AB⊥BC,AF⊥PC,PA=AB=BC.

(1)求證:平面AEF⊥平面PBC.

(2)求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)M(2,2),N(5,-2),點(diǎn)P在x軸上,分別求滿足下列條件的點(diǎn)P的坐標(biāo).

(1)∠MOP=∠OPN(O是坐標(biāo)原點(diǎn)).

(2)∠MPN是直角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知棱長為1的正方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn),M分別是AB,AD,AA1的中點(diǎn),又P,Q分別在線段A1B1A1D1上,且A1P=A1Q=x,0<x<1,設(shè)平面MEF∩平面MPQ=l,則下列結(jié)論中不成立的是 (  )

A. l∥平面ABCD

B. l⊥AC

C. 平面MEF與平面MPQ不垂直

D. 當(dāng)x變化時,l不是定直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xoy中,曲線C1 (t為參數(shù),t≠0),其中0≤α<π,在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sinθ,曲線C3:ρ=2 cosθ. (Ⅰ)求C2與C3交點(diǎn)的直角坐標(biāo);
(Ⅱ)若C2與C1相交于點(diǎn)A,C3與C1相交于點(diǎn)B,求|AB|的最大值.

查看答案和解析>>

同步練習(xí)冊答案