已知函數(shù)是二次函數(shù),不等式的解集是,且在區(qū)間上的最大值為12.
(1)求的解析式;
(2)設(shè)函數(shù)上的最小值為,求的表達(dá)式.

(1);(2)①當(dāng),即時(shí),;
②當(dāng)時(shí),;③當(dāng),即時(shí),

解析試題分析:(1)由題意先設(shè)函數(shù)的解析式,再由條件解其中的未知數(shù),可得二次函數(shù)解析式;(2)由(1)知函數(shù)的解析式,可得函數(shù)的對(duì)稱軸為,再討論對(duì)稱軸是在區(qū)間上,還是在區(qū)間外,分別得的表達(dá)式.
試題解析:(1)是二次函數(shù),且的解集是可設(shè)  2分
在區(qū)間上的最大值是由已知,得      5分
.         6分
(2)由(1)知,開(kāi)口向上,對(duì)稱軸為,      8分
①當(dāng),即時(shí),上是單調(diào)遞減,
所以;      10分
②當(dāng)時(shí),上是單調(diào)遞減,所以;      12分
③當(dāng),即時(shí),在對(duì)稱軸處取得最小值,所以.  14分
考點(diǎn):1、二次函數(shù)的解析式的求法;2、二次函數(shù)的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),,其中實(shí)數(shù)
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)的圖象只有一個(gè)公共點(diǎn)且存在最小值時(shí),記的最小值為,求的值域;
(3)若在區(qū)間內(nèi)均為增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)解不等式;
(2)對(duì)于任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/81/1/pisur.png" style="vertical-align:middle;" />的函數(shù)滿足,當(dāng)時(shí),
(1)當(dāng)時(shí),求的解析式;
(2)當(dāng)x∈時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,函數(shù),,記.
(Ⅰ)求函數(shù)的定義域的表達(dá)式及其零點(diǎn);
(Ⅱ)若關(guān)于的方程在區(qū)間內(nèi)僅有一解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)已知函數(shù))在區(qū)間上有最大值和最小值.設(shè),       
(1)求、的值;
(2)若不等式上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知.
①若函數(shù)f(x)的值域?yàn)镽,求實(shí)數(shù)m的取值范圍;
②若函數(shù)f(x)在區(qū)間(-∞,1-)上是增函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某投資公司年初用萬(wàn)元購(gòu)置了一套生產(chǎn)設(shè)備并即刻生產(chǎn)產(chǎn)品,已知與生產(chǎn)產(chǎn)品相關(guān)的各種配套費(fèi)用第一年需要支出萬(wàn)元,第二年需要支出萬(wàn)元,第三年需要支出萬(wàn)元,……,每年都比上一年增加支出萬(wàn)元,而每年的生產(chǎn)收入都為萬(wàn)元.假設(shè)這套生產(chǎn)設(shè)備投入使用年,,生產(chǎn)成本等于生產(chǎn)設(shè)備購(gòu)置費(fèi)與這年生產(chǎn)產(chǎn)品相關(guān)的各種配套費(fèi)用的和,生產(chǎn)總利潤(rùn)等于這年的生產(chǎn)收入與生產(chǎn)成本的差. 請(qǐng)你根據(jù)這些信息解決下列問(wèn)題:
(Ⅰ)若,求的值;
(Ⅱ)若干年后,該投資公司對(duì)這套生產(chǎn)設(shè)備有兩個(gè)處理方案:
方案一:當(dāng)年平均生產(chǎn)利潤(rùn)取得最大值時(shí),以萬(wàn)元的價(jià)格出售該套設(shè)備;
方案二:當(dāng)生產(chǎn)總利潤(rùn)取得最大值時(shí),以萬(wàn)元的價(jià)格出售該套設(shè)備. 你認(rèn)為哪個(gè)方案更合算?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

“活水圍網(wǎng)”養(yǎng)魚(yú)技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚(yú)時(shí),某種魚(yú)在一定的條件下,每尾魚(yú)的平均生長(zhǎng)速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)不超過(guò)4(尾/立方米)時(shí),的值為(千克/年);當(dāng)時(shí),的一次函數(shù);當(dāng)達(dá)到(尾/立方米)時(shí),因缺氧等原因,的值為(千克/年).
(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)養(yǎng)殖密度為多大時(shí),魚(yú)的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大,并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案