已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,過(guò)右焦點(diǎn)F且斜率為1的直線交橢圓C于A,B兩點(diǎn),N為弦AB的中點(diǎn).
(1)求直線ON(O為坐標(biāo)原點(diǎn))的斜率KON
(2)對(duì)于橢圓C上任意一點(diǎn)M,試證:總存在角θ(θ∈R)使等式:
OM
=cosθ
OA
+sinθ
OB
成立.
分析:(1)設(shè)出橢圓的焦距,利用離心率求得a和c的關(guān)系進(jìn)而求得a和b的關(guān)系,把右焦點(diǎn)F的坐標(biāo)代入直線AB的方程,利用韋達(dá)定理求得x1+x2的表達(dá)式,進(jìn)而求得ON的斜率.
(2)根據(jù)題意可知
OA
OB
可作為平面向量的一組基底,由平面向量基本定理,對(duì)于這一平面內(nèi)的向量
OM
,有且只有一對(duì)實(shí)數(shù)λ,μ,使得等式
OM
OA
OB
成立.設(shè)出M的坐標(biāo)利用1)中各點(diǎn)的坐標(biāo)整理求得x=λx1+μx2,y=λy1+μy2.代入橢圓的方程整理求得λ2(x12+3y12)+μ2(x22+3y22)+2λμ(x1x2+3y1y2)=3b2.利用(1)中x1+x2和x1•x2的表達(dá)式代入整理求得x1x2+3y1y2=0,進(jìn)而把A,B的坐標(biāo)代入橢圓的方程,聯(lián)立方程求得λ22=1,設(shè)以x軸正半軸為始邊,以射線OP為終邊的角為θ,則可推斷出λ=cosθ,μ=sinθ.進(jìn)而判斷出對(duì)于橢圓C上任意一點(diǎn)M,總存在角θ(θ∈R)使等式:
OM
=cosθ
OA
+sinθ
OB
成立.
解答:解:(1)設(shè)橢圓的焦距為2c,因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
c
a
=
6
3
,
所以有
a2-b2
a2
=
2
3
,故有a2=3b2.從而橢圓C的方程可化為:x2+3y2=3b2
易知右焦點(diǎn)F的坐標(biāo)為(
2
b,0
),
據(jù)題意有AB所在的直線方程為:y=x-
2
b

由①,②有:4x2-6
2
bx+3b2=0

設(shè)A(x1,y1),B(x2,y2),弦AB的中點(diǎn)N(x0,y0),由③及韋達(dá)定理有:x0=
x1+x2
2
=
3
2
b
4
,y0=x0-
2
b=-
2
4
b

所以KON=
y0
x0
=-
1
3
,即為所求.
(2)顯然
OA
OB
可作為平面向量的一組基底,由平面向量基本定理,對(duì)于這一平面內(nèi)的向量
OM
,
有且只有一對(duì)實(shí)數(shù)λ,μ,使得等式
OM
OA
OB
成立.
設(shè)M(x,y),由1)中各點(diǎn)的坐標(biāo)有:(x,y)=λ(x1,y1)+μ(x2,y2),
所以x=λx1+μx2,y=λy1+μy2
又點(diǎn)在橢圓C上,所以有(λx1+μx22+3(λy1+μy22=3b2
整理為λ2(x12+3y12)+μ2(x22+3y22)+2λμ(x1x2+3y1y2)=3b2.④
由③有:x1+x2=
3
2
b
2
,x1x2=
3b2
4

所以
x1x2+3y1y2=x1x2+3(x1-
2
b)(x2-
2
b)=4x1x2-3
2
b(x1+x2)+6b2

=3b2-9b2+6b2=0⑤
又A﹑B在橢圓上,故有(x12+3y12)=3b2,(x22+3y22)=3b2
將⑤,⑥代入④可得:λ22=1.
對(duì)于橢圓上的每一個(gè)點(diǎn)M,總存在一對(duì)實(shí)數(shù),使等式
OM
OA
OB
成立,
而λ22=1
在直角坐標(biāo)系x-o-y中,取點(diǎn)P(λ,μ),
設(shè)以x軸正半軸為始邊,以射線OP為終邊的角為θ,顯然λ=cosθ,μ=sinθ.
也就是:對(duì)于橢圓C上任意一點(diǎn)M,總存在角θ(θ∈R)使等式:
OM
=cosθ
OA
+sinθ
OB
成立.
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合問(wèn)題.考查了考生綜合分析問(wèn)題,基礎(chǔ)知識(shí)的綜合運(yùn)用以及基本的計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過(guò)點(diǎn)P(1,
3
2
)

(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長(zhǎng)為2
3
,右焦點(diǎn)F與拋物線y2=4x的焦點(diǎn)重合,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)A、B是橢圓C上的不同兩點(diǎn),點(diǎn)D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過(guò)點(diǎn)A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點(diǎn),且以MN為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長(zhǎng)軸長(zhǎng)是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)過(guò)點(diǎn)P(0,-2)的直線l交橢圓于M,N兩點(diǎn),且M,N不與橢圓的頂點(diǎn)重合,若以MN為直徑的圓過(guò)橢圓C的右頂點(diǎn)A,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長(zhǎng)為2,離心率為
2
2
,設(shè)過(guò)右焦點(diǎn)的直線l與橢圓C交于不同的兩點(diǎn)A,B,過(guò)A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案