已知函數(shù),)為偶函數(shù),且函數(shù)圖象的兩相鄰對稱軸間的距離為
(1)求的值;
(2)將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求的單調(diào)遞減區(qū)間.
(1) ;(2)

試題分析:(1)將原函數(shù)化簡得,函數(shù)為偶函數(shù),所以,由,所以,又圖象的兩相鄰對稱軸間的距離為,所以周期,可得;(2) 的圖象向右平移個單位后,得到的圖象,再將所得圖象橫坐標(biāo)伸長到原來的4倍,縱坐標(biāo)不變,得到的圖象,所以,將看作整體,由余弦函數(shù)的性質(zhì),可得的單調(diào)遞減區(qū)間
解:(1)
.因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051751559463.png" style="vertical-align:middle;" />為偶函數(shù),所以對,恒成立,
因此

整理得.因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051751247418.png" style="vertical-align:middle;" />,且,所以
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051751231531.png" style="vertical-align:middle;" />,故.所以
由題意得,所以.故
因此
(2)將的圖象向右平移個單位后,得到的圖象,再將所得圖象橫坐標(biāo)伸長到原來的4倍,縱坐標(biāo)不變,得到的圖象.
所以
當(dāng)),
)時,單調(diào)遞減,
因此的單調(diào)遞減區(qū)間為).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時,求函數(shù)取得最大值和最小值時的值;
(2)設(shè)銳角的內(nèi)角A、B、C的對應(yīng)邊分別是,且,若向量與向量平行,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將函數(shù)的圖象沿軸向左平移個單位后,得到一個關(guān)于軸對稱的圖象,則 
的一個可能取值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),,,且以為最小正周期.
(1)求;
(2)求的解析式;
(3)已知,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2012·山東高考]函數(shù)y=2sin (0≤x≤9)的最大值與最小值之和為(  )
A.2-B.0C.-1D.-1-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

用五點(diǎn)法作函數(shù)的圖像,并說明這個圖像是由的圖像經(jīng)過怎樣的變換得到的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為了得到函數(shù)y=cos(x+)的圖象,只需把余弦曲線y=cosx上的所有的點(diǎn)  (    )
A.向左平移個單位長度B.向右平移個單位長度
C.向左平移個單位長度D.向右平移個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

滿足下了列哪些條件(填序號)__________.
①定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240506461391072.png" style="vertical-align:middle;" />
②以為最小周期;
③為奇函數(shù);
④在上單調(diào)遞增;
⑤關(guān)于點(diǎn)成中心對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的最小正周期為    

查看答案和解析>>

同步練習(xí)冊答案