已知雙曲線的兩焦點為F、F',若該雙曲線與拋物線y2=8x有一個公共的焦點F,且兩曲線的一個
交點為P,|PF|=5,則∠FPF'的大小為    (結(jié)果用反三角函數(shù)表示).
【答案】分析:由題意雙曲線與拋物線y2=8x有一個公共的焦點F,可求得雙曲線的兩個焦點的坐標(biāo),再由兩曲線的一個交點為P,|PF|=5,利用拋物線的性質(zhì)可以求得P點的坐標(biāo),再由兩點間距離公式可以求得P點到另一個焦點的距離,由此即可利用余弦定理求出∠FPF'的余弦值,用反三角函數(shù)表示出角即可.
解答:解:由題意知拋物線的焦點是(2,0),故雙曲線的焦點是(2,0)與(-2,0)
又兩曲線的一個交點為P,|PF|=5,由拋物線的性質(zhì)可求得P的橫坐標(biāo)為3,代入拋物線方程可求得P點的縱坐標(biāo)是±2
不妨令P(3,2),由兩點間距離公式求得,P到另一個焦點的距離是7
在△FPF'中,由余弦定理得cos∠FPF'==
∴∠FPF'的大小為
故答案為:
點評:本題考查圓錐曲線的綜合,求解本題的關(guān)鍵是根據(jù)拋物線的性質(zhì)求出雙曲線的兩個焦點的坐標(biāo)以及兩曲線交點的坐標(biāo),由此求出點P到兩個焦點的距離,在這個焦點三角形中利用余弦定理求出∠FPF'的余弦值,再用反三角函數(shù)表示,本題的解題思路要注意從圖形上推理,圓錐曲線的題解題時要注意圖形的作用,數(shù)形結(jié)合是解析幾何的根本.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆浙江省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知雙曲線的兩焦點為,過軸的垂線交雙曲線于兩點,若內(nèi)切圓的半徑為,則此雙曲線的離心率為(  )

A.             B.           C.             D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省五市高三第二次聯(lián)考理科數(shù)學(xué) 題型:選擇題

已知雙曲線的兩焦點為F1、F2,點P在雙曲線上,∠F1PF2的平分線分線段F1F2的比為5 :1,則雙曲線離心率的取值范圍是

A.(1,]      B.(1,)       C.(2, ]         D.(,2]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年云南省高二上學(xué)期期末數(shù)學(xué)理卷 題型:解答題

(本題滿分12分)

已知雙曲線的兩焦點為,,直線是雙曲線的一條準(zhǔn)線,

(Ⅰ)求該雙曲線的標(biāo)準(zhǔn)方程;

(Ⅱ)若點在雙曲線右支上,且,求的值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩焦點為,為動點,若

(Ⅰ)求動點的軌跡方程;

(Ⅱ)若,設(shè)直線過點,且與軌跡交于、兩點,直線交于點.試問:當(dāng)直線在變化時,點是否恒在一條定直線上?若是,請寫出這條定直線方程,并證明你的結(jié)論;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案