從集合{1,2,3,5,7,-4,-6,-8}中任取兩個不同的元素,分別作為方程Ax2+By2=1中的A、B的值,則此方程可表示
30
30
種不同的雙曲線.
分析:若A正B負(fù),則有5×3=15個;若A負(fù)B正,則有3×5=15個,由此求得不同的雙曲線的數(shù)量.
解答:解:方程表示雙曲線,等價于A,B異號,若A正B負(fù),則有5×3=15個.
若A負(fù)B正,則有3×5=15個,故不同的雙曲線的數(shù)量為15+15=30,
故答案為 30.
點評:本題主要考查排列、組合以及簡單計數(shù)原理的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從集合{-1、-2、-3、-4、0、1、2、3、4、5}中,隨機選出5個數(shù)字組成一個子集,使得這5個數(shù)中的任何兩個數(shù)之和都不等于1,則取出這樣的子集的概率為
8
63
8
63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從集合{1,2,3,4,5}中任取三個元素構(gòu)成三元有序數(shù)組(a1,a2,a3),規(guī)定a1<a2<a3
(1)從所有的三元有序數(shù)組中任選一個,求它的所有元素之和等于10的概率
(2)定義三元有序數(shù)組(a1,a2,a3)的“項標(biāo)距離”為d=
3
i=1
|ai-i|
(其中
n
i=1
xi=x1+x2+…+xn
),從所有的三元有序數(shù)組中任選一個,求它的“項標(biāo)距離”d為偶數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從集合{-1,1,2,3}中隨機選取一個數(shù)記為m,從集合{1,2,3}中隨機選取一個數(shù)記為n,則方程
x
2
 
m
+
y
2
 
n
=1表示橢圓的概率為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從集合{1,2,3,…,20}中選3個不同的數(shù),使這3個數(shù)成遞增的等差數(shù)列,則這樣的數(shù)列共有
90
90
組.

查看答案和解析>>

同步練習(xí)冊答案