【題目】某校舉辦校園科技文化藝術(shù)節(jié),在同一時(shí)間安排《生活趣味數(shù)學(xué)》和《校園舞蹈賞析》兩場講座.已知A、B兩學(xué)習(xí)小組各有5位同學(xué),每位同學(xué)在兩場講座任意選聽一場.若A組1人選聽《生活趣味數(shù)學(xué)》,其余4人選聽《校園舞蹈賞析》;B組2人選聽《生活趣味數(shù)學(xué)》,其余3人選聽《校園舞蹈賞析》.
(1)若從此10人中任意選出3人,求選出的3人中恰有2人選聽《校園舞蹈賞析》的概率;
(2)若從A、B兩組中各任選2人,設(shè)X為選出的4人中選聽《生活趣味數(shù)學(xué)》的人數(shù),求X的分布列和數(shù)學(xué)期望E(X).
【答案】
(1)解:設(shè)“選出的3人中恰2人選聽《校園舞蹈賞析》”為事件M,
則 ,
答:選出的3人中恰2人選聽《校園舞蹈賞析》的概率為
(2)解:X可能的取值為0,1,2,3, , , ,
故 .
所以X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
|
|
|
|
所以X的數(shù)學(xué)期望
【解析】(1)利用相互獨(dú)立事件與古典概率計(jì)算公式即可得出.(2)X可能的取值為0,1,2,3,利用相互獨(dú)立事件、互斥事件的概率計(jì)算公式即可得出概率、分布列與數(shù)學(xué)期望.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識(shí),掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=2ln(x+2)﹣(x+1)2 , g(x)=k(x+1).
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)k=2時(shí),求證:對于x>﹣1,f(x)<g(x)恒成立;
(3)若存在x0>﹣1,使得當(dāng)x∈(﹣1,x0)時(shí),恒有f(x)>g(x)成立,試求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線 的參數(shù)方程 ( 為參數(shù)),曲線 的極坐標(biāo)方程為 .
(1)將曲線 的參數(shù)方程化為普通方程,將曲線 的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)試問曲線 , 是否相交?若相交,請求出公共弦的長;若不相交,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線.
(1)若直線與直線平行,求實(shí)數(shù)的值;
(2)若, ,點(diǎn)在直線上,已知的中點(diǎn)在軸上,求點(diǎn)的坐標(biāo).
【答案】(1);(2)
【解析】試題分析:(1)根據(jù)兩直線平行,對應(yīng)方向向量共線,列方程即可求出的值;(2)根據(jù)時(shí),直線的方程設(shè)出點(diǎn)的坐標(biāo),由此求出的中點(diǎn)坐標(biāo),再由中點(diǎn)在軸上求出點(diǎn)的坐標(biāo).
試題解析:(1)∵直線與直線平行,
∴,
∴,經(jīng)檢驗(yàn)知,滿足題意.
(2)由題意可知: ,
設(shè),則的中點(diǎn)為,
∵的中點(diǎn)在軸上,∴,
∴.
【題型】解答題
【結(jié)束】
16
【題目】在平面直角坐標(biāo)系xOy中,已知△ABC三個(gè)頂點(diǎn)坐標(biāo)為A(7,8),B(10,4),C(2,-4).
(1)求BC邊上的中線所在直線的方程;
(2)求BC邊上的高所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程為 (t為參數(shù), ),以坐標(biāo)原點(diǎn)o為極點(diǎn),x軸的正半軸為極軸,并取相同的長度單位,建立極坐標(biāo)系.曲線
(1)若直線l曲線 相交于點(diǎn) , , ,證明: 為定值;
(2)將曲線 上的任意點(diǎn) 作伸縮變換 后,得到曲線 上的點(diǎn) ,求曲線 的內(nèi)接矩形 周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知S3=7,
且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng);
(2)令,n=1,2,…,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知隨機(jī)變量 的取值為不大于 的非負(fù)整數(shù)值,它的分布列為:
0 | 1 | 2 | n | ||
其中 ( )滿足: ,且 .
定義由 生成的函數(shù) ,令 .
(I)若由 生成的函數(shù) ,求 的值;
(II)求證:隨機(jī)變量 的數(shù)學(xué)期望 , 的方差 ;
( )
(Ⅲ)現(xiàn)投擲一枚骰子兩次,隨機(jī)變量 表示兩次擲出的點(diǎn)數(shù)之和,此時(shí)由 生成的函數(shù)記為 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家之一,城市缺水問題較為突出,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn) (噸),一位居民的月用水量不超過 的部分按平價(jià)收費(fèi),超出 的部分按議價(jià)收費(fèi),為了了解居民用水情況,通過抽祥,獲得了某年100位居民毎人的月均用水量(單位:噸),將數(shù)據(jù)按照 分成 組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中a的值;
(2)若該市有110萬居民,估計(jì)全市居民中月均用水量不低于 噸的人數(shù),并說明理由;
(3)若該市政府希望使80%的居民每月的用水量不超過標(biāo)準(zhǔn) (噸),估計(jì)x的值(精確到0.01),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com