已知:四棱錐P-ABCD,
,底面ABCD是直角梯形,
,且AB∥CD,
, 點F為線段PC的中點,
(1)求證: BF∥平面PAD;
(2) 求證:
。
(1)證明:取PD的中點E,連結EF、AE,
因為點F為PC的中點,所以EF∥CD,且
,
而AB∥CD,
,所以EF∥AB且EF=AB
所以四邊形EFBA是平行四邊形,所以BF∥AE
因為
所以BF∥平面PAD (6分)
(2)由題意知
,
又
,
,
所以
由(1)知BF∥AE
所以
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖是某直三棱柱(側棱與底面垂直)被削去上底后的直觀圖與三視圖的側視圖、俯視圖.在直觀圖中,
是
的中點.側視圖是直角梯形,俯視圖是等腰直角
三角形,有關數(shù)據如圖所示.
(Ⅰ)求出該幾何體的體積;
(Ⅱ)求證:
EM∥平面
ABC;
(Ⅲ) 試問在棱
DC上是否存在點N,使NM⊥平面
?若存在,確定點N的位置;
若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD為矩形,PD⊥底面ABCD,E是AB上一點,PE⊥EC.
已知PD=
,CD=2,AE=
,
(1)求證:平面PED⊥平面PEC
(2)求二面角E-PC-D的大小。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,正三棱柱
.
(1)求證:平面
;
(2)求證:
;
(3)若
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在直三棱柱
中,
,
,
是
的中點,
是
上一點,且
.
(1)求證:
平面
;
(2)求三棱錐
的體積;
(3)試在
上找一點
,使得
平面
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四棱錐
中,底面
是正方形,
是正方形
的中心,
底面
,
是
的中點.
求證:(Ⅰ)
∥平面
;
(Ⅱ)平面
平面
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=PA=a,點O、D分別是AC、PC的中點,OP⊥底面ABC。
(1)求三棱錐P-ABC的體積;
(2)求異面直線PA與BD所成角余弦值的大小。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知菱形
的頂點
在橢圓
上,對角線
所在直線的斜率為1.
(Ⅰ)當直線
過點
時,求直線
的方程;
(Ⅱ)當
時,求菱形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐
中,四邊形
是正方形,
平面
,
是
上的一點,
是
的中點
(Ⅰ)求證:
;
(Ⅱ)若
,求證:
平面
.
查看答案和解析>>