【題目】某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).

表中,.

1)根據(jù)散點圖判斷,哪一個更適宜作燒水時間關于開關旋鈕旋轉的弧度數(shù)的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結果和表中數(shù)據(jù),建立關于的回歸方程;

3)若單位時間內(nèi)煤氣輸出量與旋轉的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為,

【答案】1)選取更合適;(2;(3時,煤氣用量最小.

【解析】

1)根據(jù)散點圖的特點,可得更適合;

2)先建立關于的回歸方程,再得出關于的回歸方程;

3)寫出函數(shù)關系,利用基本不等式得出最小值及其成立的條件.

1)選取更適宜作燒水時間關于開關旋鈕旋轉的弧度數(shù)的回歸方程類型;

2

由公式可得:,

,

所以所求回歸直線方程為:;

3)根據(jù)題意,設,

則煤氣用量,

當且僅當時,等號成立,

時,煤氣用量最小.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是圓柱的一條母線,已知BC過底面圓的圓心OD是圓O上不與點B、C重合的任意一點,

1)求直線AC與平面ABD所成角的大。

2)求點B到平面ACD的距離;

3)將四面體ABCD繞母線AB旋轉一周,求由旋轉而成的封閉幾何體的體積;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線E焦點F,過點F且斜率為2的直線與拋物線交于A、B兩點,且

(1)求拋物線E的方程;

(2)O是坐標原點,P,Q是拋物線E上分別位于x軸兩側的兩個動點,且

①證明:直線PQ必過定點,并求出定點G的坐標;

②過GPQ的垂線交拋物線于C,D兩點,求四邊形PCQD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正三角形的邊長為,將它沿高折疊,使點與點間的距離為,則四面體外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象在點處的切線與直線平行.

(Ⅰ)求函數(shù)的極值;

(Ⅱ)若對于,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,是邊長為4的正三角形, ,分別為的中點,且.

(1)證明:平面ABC;

(2)求二面角的余弦值;

(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4—5:參數(shù)方程選講]

在直角坐標系xoy中,曲線的參數(shù)方程是(t是參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線的極坐標方程是

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)若兩曲線交點為A、B,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1時,求不等式的解集;

2若關于x的不等式有實數(shù)解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】鄭汴一體化是依托鄭州省會城市資源優(yōu)勢發(fā)展開封的省級戰(zhàn)略,實施至今,取得了一系列的成就:兩城電信同價,金融同城,鄭開大道全線貫通,城際列車實常態(tài)化運營.隨著鄭汴一體化的深入推進,很多人認為鄭州開封未來有望合并.為了解市民對鄭汴合并的態(tài)度,現(xiàn)隨機抽查55人,結果按年齡分類統(tǒng)計形成如下表格:

支持

反對

合計

不足35

20

35歲以上

30

合計

25

55

1)請完成上面的2×2列聯(lián)表,并判斷是否有99.5%的把握認為市民對鄭汴合并的態(tài)度與年齡有關?

2)在上述樣木中用分層抽樣的方法,從攴持鄭汴合并的兩組市民中隨機抽取6人作進一步調(diào)查,從這6人中任選2人,求恰有1不足35的市民和1“35歲及以上的市民的概率.

附:

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.814

5.024

7.879

10.828

查看答案和解析>>

同步練習冊答案