已知f(x)是定義在[-1,1]上的偶函數(shù),且在(0,1]上單調(diào)遞增,則不等式f(1-x)<f(x2-1)的解集是


  1. A.
    (-2,1)
  2. B.
    數(shù)學(xué)公式
  3. C.
    (0,1)∪數(shù)學(xué)公式
  4. D.
    不能確定
C
分析:由f(x)是定義在[-1,1]上,可得:-1≤1-x≤1①;-1≤x2-1≤1②;f(x)是定義在[-1,1]上的偶函數(shù),(0,1]上單調(diào)遞增,可得|1-x|<|x2-1|③;x=0時(shí),有f(0)<f(0),矛盾,故|x|≠0④,由①②③④可得不等式組,解之即可得到答案.
解答:∵f(x)是定義在[-1,1]上的偶函數(shù),且在(0,1]上單調(diào)遞增,∴f(1-x)<f(x2-1)?解得:
∴不等式f(1-x)<f(x2-1)的解集為:
故選C.
點(diǎn)評(píng):本題考察函數(shù)奇偶性的性質(zhì),難點(diǎn)在求不等式組的解集,易錯(cuò)點(diǎn)在于忽略隱含條件x≠1,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí),都有
f(a)+f(b)
a+b
>0

(1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對(duì)所有f'(x)=0,任意x=-
1
2
恒成立,求實(shí)數(shù)x=1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對(duì)任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在實(shí)數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設(shè)a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關(guān)系
a>b>c
a>b>c

查看答案和解析>>

同步練習(xí)冊(cè)答案