設(shè)

(Ⅰ)求g(x)的單調(diào)區(qū)間和最小值;

(Ⅱ)討論g(x)與的大小關(guān)系;

(Ⅲ)求m的取值范圍,使得對任意x>0恒成立.

答案:
解析:

  解:(Ⅰ)由題設(shè)

  所以

  令

  當(dāng)時,

  即單調(diào)遞減,

  當(dāng)時,,

  即單調(diào)遞增,

  所以唯一極值點且為極小值,

  即的極小值為

  (Ⅱ),設(shè)

  則

  當(dāng)時,,

  當(dāng)時,

  因此,內(nèi)單調(diào)遞減,

  所以當(dāng)時,,

  即,當(dāng)時,

  (Ⅲ)有(1)知,的極小值為,

  所以,,對任意的成立,

  即,,所以


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α∈(0,
π
2
)
,函數(shù)f(x)的定義域為[0,1],且f(0)=0,f(1)=1,當(dāng)x≥y時,f(
x+y
2
)=f(x)sinα+(1-sinα)f(y)

(Ⅰ)求f(
1
2
)
,f(
1
4
)
;
(Ⅱ)求α的值;
(Ⅲ)求g(x)=
3
sin(α-2x)+cos(α-2x)
的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ex-e-x,g(x)=ex+e-x,其中e=2.718….
(1)求[f(x)]2-[g(x)]2的值;
(2)設(shè)f(x)•f(y)=4,g(x)•g(y)=8,求
g(x+y)g(x-y)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-e,0)∪(0,e]上的奇函數(shù),當(dāng)x∈(0,e]時,f(x)=ax+lnx(其中e是自然對數(shù)的底數(shù),a∈R).
(1)求f(x)的解析式;
(2)設(shè)a=-1,g(x)=-
lnx
x
,求證:當(dāng)x∈(0,e]時,f(x)<g(x)+
1
2
恒成立;
(3)是否存在負(fù)數(shù)a,使得當(dāng)x∈(0,e]時,f(x)的最大值是-3?如果存在,求出實數(shù)a的值;如果不存在,請說明理由.
理科選修.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+sinxcosx,g(x)=cos2(x+
π
12
)

(1)設(shè)x=x0是函數(shù)y=f(x)的圖象上一條對稱軸,求g(
x
 
0 
)
的值.
(2)求使函數(shù)h(x)=f(
ωx
2
)+g(
ωx
2
),(ω>0)
,在區(qū)間[-
3
,
π
3
]
上是增函數(shù)的ω的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黑龍江省大慶鐵人中學(xué)2010-2011學(xué)年高二下學(xué)期期末考試數(shù)學(xué)試題 題型:044

設(shè)

(1)求g(x)的單調(diào)區(qū)間和最小值;

(2)討論g(x)與的大小關(guān)系;

(3)求a的范圍,使得g(a)-g(x)<對任意x>0成立.

查看答案和解析>>

同步練習(xí)冊答案