【題目】一個幾何體的三視圖如圖所示,則該幾何體的表面積為(
A.38+2π
B.38﹣2π
C.38﹣π
D.38

【答案】D
【解析】解:由幾何體的三視圖可知,該幾何體是一組合體由幾何體的三視圖可知,該幾何體是長方體中間挖去一個圓柱體.表面積應(yīng)為長方體表面積減去圓柱底面積,再加上圓柱側(cè)面積. 長方體長寬高分別為4,3,1,其表面積為(4×3+4×1+3×1)×2=38
圓柱底面半徑為1,高為1
圓柱底面積為2×π×12=2π,側(cè)面積為2π×1×1=2π
所以所求的表面積為38﹣2π+2π=38
故選D
【考點精析】本題主要考查了由三視圖求面積、體積的相關(guān)知識點,需要掌握求體積的關(guān)鍵是求出底面積和高;求全面積的關(guān)鍵是求出各個側(cè)面的面積才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:
①三點確定一個平面;
②在空間中,過直線外一點只能作一條直線與該直線平行;
③若平面α上有不共線的三點到平面β的距離相等,則α∥β;
④若直線a、b、c滿足a⊥b、a⊥c,則b∥c.
其中正確命題的個數(shù)是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an]的前n項和記為Sn , 且滿足Sn=2an﹣n,n∈N* (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)證明: +… (n∈N*)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}滿足a1= ,an+1=a ﹣an+1,則M= + +…+ 的整數(shù)部分是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,且離心率為.

(1)求橢圓的方程;

(2)設(shè)點軸上的射影為點,過點的直線與橢圓相交于, 兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又PA=AB=4,∠CDA=120°,點N在線段PB上,且PN=
(Ⅰ)求證:BD⊥PC;
(Ⅱ)求證:MN∥平面PDC;
(Ⅲ)求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點到定點的距離之和為.

(1)求動點軌跡的方程;

(2)設(shè),過點作直線,交橢圓于不同于兩點,直線, 的斜率分別為, ,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某高中隨機選取5名高一男生,其身高和體重的數(shù)據(jù)如表所示:

身高x(cm)

160

165

170

175

180

體重y(kg)

63

66

70

72

74

根據(jù)如表可得回歸方程 =0.56x+ ,據(jù)此模型可預(yù)報身高為172cm的高一男生的體重為(
A.70.12kg
B.70.29kg
C.70.55kg
D.71.05kg

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若函數(shù)的圖像在點處有相同的切線,求的值;

(Ⅱ)當時,恒成立,求整數(shù)的最大值;

(Ⅲ)證明:

查看答案和解析>>

同步練習冊答案