斜三棱柱ABC-A1B1C1的底面△ABC中,AB=AC=10,BC=12,A1到A、B、C三點(diǎn)的距離都相等,且AA1=13,求斜三棱柱的側(cè)面積.

答案:
解析:

  解析:∵A1A=A1B=A1C

  ∴點(diǎn)A1在平面ABC上的射影為△ABC的外心,在∠BAC平分線AD上

  ∵AB=AC

  ∴AD⊥BC

  ∵AD為A1A在平面ABC上的射影

  ∴BC⊥AA1

  ∴BC⊥BB1

  ∴BB1C1C為矩形,S=BB1×BC=156

  取AB中點(diǎn)E,連A1E

  ∵A1A=A1B

  ∴A1E⊥AB

  

  

  ∴S側(cè)=396


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰為AC的中點(diǎn)D,又知BA1⊥AC1
(Ⅰ)求證:AC1⊥平面A1BC;
(Ⅱ)求CC1到平面A1AB的距離;
(Ⅲ)求二面角A-A1B-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,斜三棱柱ABC-A1B1C1的側(cè)面AA1C1C是面積為
3
2
的菱形,∠ACC1為銳角,側(cè)面ABB1A1⊥側(cè)面AA1C1C,且A1B=AB=AC=1.
(Ⅰ)求證:AA1⊥BC1
(Ⅱ)求三棱錐A1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰為AC的中點(diǎn)D,且BA1⊥AC1
(1)求證:AC1⊥平面A1BC;
(2)求多面體B1C1ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•撫州模擬)在斜三棱柱ABC-A1B1C1中,AB=BC=2,∠ABC=120°,又頂點(diǎn)A1在底面ABC上的射影落在AC上,側(cè)棱AA1與底面ABC成60°角,D為AC的中點(diǎn).
(1)求證:BD⊥AA1
(2)如果二面角A1-BD-C1為直二面角,試求側(cè)棱CC1與側(cè)面A1ABB1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰為AC的中點(diǎn)D,E為AB的中點(diǎn),BA1⊥AC1
(Ⅰ)求證:AC1⊥平面A1BC;
(Ⅱ)求二面角B-A1E-C余弦值的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案