【題目】已知等差數(shù)列的前項和為,并且,,數(shù)列滿足:,,記數(shù)列的前項和為

1)求數(shù)列的通項公式及前項和公式;

2)求數(shù)列的通項公式及前項和公式

3)記集合,若的子集個數(shù)為16,求實數(shù)的取值范圍.

【答案】123

【解析】

試題(1)數(shù)列是等差數(shù)列,可把已知用表示出來,列出方程組,解出,從而得到通項公式和膠項和;(2)由已知得,這是數(shù)列前后項的比值,因此可用連乘法求得通項,即,從而有,它可看作是一個等差數(shù)列和一個等比數(shù)列的乘積,因此其前項和用乘公比錯位相減法求得;(3)由(1)(2)求得,不等式恒成立,即恒成立,只要求得的最小值即可,先求出前面幾項,觀察歸納猜想出單調(diào)性并給出證明(可用證明數(shù)列的單調(diào)性),從而可求得最小值,得范圍.

試題解析:(1)設(shè)數(shù)列的公差為,由題意得

2)由題意得

疊乘得

由題意得

②-①得:

3)由上面可得

下面研究數(shù)列的單調(diào)性,

時,單調(diào)遞減.

所以不等式解的個數(shù)為4,.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】斜三棱柱中,底面是邊長為的正三角形,側(cè)棱長為,側(cè)棱與底面相鄰兩邊都成角,求此三棱柱的側(cè)面積和體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一次猜獎游戲中,1,2,3,4四扇門里擺放了,,四件獎品(每扇門里僅放一件).甲同學說:1號門里是,3號門里是;乙同學說:2號門里是,3號門里是;丙同學說:4號門里是,2號門里是;丁同學說:4號門里是,3號門里是.如果他們每人都猜對了一半,那么4號門里是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一個半徑為1千米的扇形景點的平面示意圖,.原有觀光道路OC,且.為便于游客觀賞,景點管理部門決定新建兩條道路PQ、PA,其中P在原道路OC(不含端點O、C)上,Q在景點邊界OB上,且,同時維修原道路的OP段,因地形原因,新建PQ段、PA段的每千米費用分別是萬元、萬元,維修OP段的每千米費用是萬元.

1)設(shè),求所需總費用,并給出的取值范圍;

2)當P距離O處多遠時,總費用最小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量萬件(生產(chǎn)量與銷售量相等)與促銷費用萬元滿足(其中,為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費用),產(chǎn)品的銷售價格定為件.

1)將該產(chǎn)品的利潤萬元表示為促銷費用萬元的函數(shù);

2)促銷費用投入多少萬元時,該公司的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點與短軸的一個端點構(gòu)成一個等邊三角形,且直線與圓相切.

1)求橢圓的方程;

2)已知過橢圓的左頂點的兩條直線,分別交橢圓兩點,且,求證:直線過定點,并求出定點坐標;

3)在(2)的條件下求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年遼寧省正式實施高考改革.新高考模式下,學生將根據(jù)自己的興趣、愛好、學科特長和高校提供的“選考科目要求”進行選課.這樣學生既能尊重自己愛好、特長做好生涯規(guī)劃,又能發(fā)揮學科優(yōu)勢,進而在高考中獲得更好的成績和實現(xiàn)自己的理想.考改實施后,學生將在高二年級將面臨著的選課模式,其中“3”是指語、數(shù)、外三科必學內(nèi)容,“1”是指在物理和歷史中選擇一科學習,“2”是指在化學、生物、地理、政治四科中任選兩科學習.某校為了更好的了解學生對“1”的選課情況,學校抽取了部分學生對選課意愿進行調(diào)查,依據(jù)調(diào)查結(jié)果制作出如下兩個等高堆積條形圖:根據(jù)這兩幅圖中的信息,下列哪個統(tǒng)計結(jié)論是不正確的(

A.樣本中的女生數(shù)量多于男生數(shù)量

B.樣本中有學物理意愿的學生數(shù)量多于有學歷史意愿的學生數(shù)量

C.樣本中的男生偏愛物理

D.樣本中的女生偏愛歷史

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若,對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在坐標原點,且經(jīng)過點,它的一個焦點與拋物線的焦點重合.

1)求橢圓的方程;

2)斜率為的直線過點,且與拋物線交于兩點,設(shè)點,的面積為,求的值;

3)若直線過點,且與橢圓交于兩點,點關(guān)于軸的對稱點為,直線的縱截距為,證明:為定值.

查看答案和解析>>

同步練習冊答案