• <ins id="ow7mj"></ins>
    <label id="ow7mj"></label>
  • <label id="ow7mj"><menu id="ow7mj"></menu></label>
    <input id="ow7mj"><strike id="ow7mj"><tr id="ow7mj"></tr></strike></input>
    <pre id="ow7mj"></pre>
    <ins id="ow7mj"><small id="ow7mj"><wbr id="ow7mj"></wbr></small></ins>
  • <label id="ow7mj"></label>
    <pre id="ow7mj"></pre><tbody id="ow7mj"><strike id="ow7mj"></strike></tbody>
    已知函數(shù)f(x)=x2+ax+b.
    (1)若對任意的實數(shù)x,都有f(x)≥2x+a,證明:b≥1;
    (2)當x∈[-1,1]時,f(x)的最大值為b-a+1,求a的取值范圍;
    (3)若a=-2,關于x的方程|f(x)|=1有4個不相等的實數(shù)根,求b的取值范圍.
    分析:(1)由題意可得x2+(a-2)x+b-a≥0恒成立,可得△=(a-2)2-4(b-a)≤0,由此求得b的范圍.
    (2)由于當x∈[-1,1]時,f(x)的最大值為b-a+1=f(-1),可得f(x)圖象的對稱軸x=-
    a
    2
    要滿足-
    a
    2
    -1+1
    2
    ,由此求得a的范圍.
    (3)由題意可得方程x2-2x+b=1和x2-2x+b=-1各有兩個不相等的實數(shù)根,故兩個方程的判別式都要大于0,從而求得b的范圍.
    解答:解:(1)∵x2+ax+b≥2x+a恒成立,即x2+(a-2)x+b-a≥0恒成立.
    ∴△=(a-2)2-4(b-a)≤0,
    ∴a2+4-4b≤0,∴4-4b≤0,∴b≥1.------(5分)
    (2)∵當x∈[-1,1]時,f(x)的最大值為b-a+1,即f(-1),
    ∴f(x)圖象的對稱軸x=-
    a
    2
    要滿足-
    a
    2
    -1+1
    2
    ,
    ∴a≤0.--------(10分)
    (3)∵關于x的方程|x2-2x+b|=1有4個不相等的實數(shù)根,
    ∴方程x2-2x+b=1和x2-2x+b=-1各有兩個不相等的實數(shù)根,
    ∴兩個方程的判別式都要大于0,
    4-4(b-1)>0
    4-4(b+1)>0
    ,
    解得b<0.---(15分)
    點評:本題主要考查方程根的存在性及個數(shù)判斷,二次函數(shù)的性質應用,屬于中檔題.
    練習冊系列答案
    相關習題

    科目:高中數(shù)學 來源: 題型:

    精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
    π
    2
    )的部分圖象如圖所示,則f(x)的解析式是( 。
    A、f(x)=2sin(πx+
    π
    6
    )(x∈R)
    B、f(x)=2sin(2πx+
    π
    6
    )(x∈R)
    C、f(x)=2sin(πx+
    π
    3
    )(x∈R)
    D、f(x)=2sin(2πx+
    π
    3
    )(x∈R)

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    (2012•深圳一模)已知函數(shù)f(x)=
    1
    3
    x3+bx2+cx+d
    ,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
    (1)求f(x);
    (2)設g(x)=x
    f′(x)
     , m>0
    ,求函數(shù)g(x)在[0,m]上的最大值;
    (3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    (2011•上海模擬)已知函數(shù)f(x)=(
    x
    a
    -1)2+(
    b
    x
    -1)2,x∈(0,+∞)
    ,其中0<a<b.
    (1)當a=1,b=2時,求f(x)的最小值;
    (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
    (3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
    求證:f1(x)+f2(x)>
    4c2
    k(k+c)

    查看答案和解析>>

    科目:高中數(shù)學 來源:上海模擬 題型:解答題

    已知函數(shù)f(x)=(
    x
    a
    -1)2+(
    b
    x
    -1)2,x∈(0,+∞)
    ,其中0<a<b.
    (1)當a=1,b=2時,求f(x)的最小值;
    (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
    (3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
    求證:f1(x)+f2(x)>
    4c2
    k(k+c)

    查看答案和解析>>

    科目:高中數(shù)學 來源:深圳一模 題型:解答題

    已知函數(shù)f(x)=
    1
    3
    x3+bx2+cx+d
    ,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
    (1)求f(x);
    (2)設g(x)=x
    f′(x)
     , m>0
    ,求函數(shù)g(x)在[0,m]上的最大值;
    (3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

    查看答案和解析>>

    同步練習冊答案