函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<2π)在R上的部分圖象如圖所示,則f(2014)=
 
考點:由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:由最大值可得A,由周期T=2[5-(-1)]=12可求ω,根據(jù)f(-1)=0及0≤φ<2π可得φ.
解答: 解:由函數(shù)的圖象可得A=5,周期T=
ω
=11-(-1)=12,∴ω=
π
6

再由五點法作圖可得
π
6
(-1)+φ=0,∴φ=
π
6
,故函數(shù)f(x)=5sin(
π
6
x+
π
6
).
故f(2014)=5sin(
2014π
6
+
π
6
)=5sin
2015π
6
=5sin(336π-
π
6
)=5sin(-
π
6
)=-5sin
π
6
=-
5
2

故答案為:-
5
2
點評:本題考查由y=Asin(ωx+φ)的部分圖象確定解析式,考查數(shù)形結(jié)合思想,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

小路、小華與小敏三位同學(xué)討論一道數(shù)學(xué)題,當(dāng)他們每個人都把自己的解法說出來以后,小路說:“我做錯了,”小華說:“小路做對了,”小敏說:“我做錯了.”老師看過他們的答案并聽了他們以上的陳述之后說:“你們?nèi)煌瑢W(xué)中只有一人做對了,只有一人說對了.”那么請問:根據(jù)老師的回答,誰做對了呢?( 。
A、小路B、小華
C、小敏D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1+sin2x,sinx-cosx),
b
=(1,sinx+cosx),函數(shù)f(x)=
a
b

(Ⅰ)求f(x)的最大值及相應(yīng)的x的值;
(Ⅱ)在△ABC中,a,b,c分別是三個內(nèi)角A,B,C所對邊,若f(
A
2
)=2,a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x,x<0
a+2x,x≥0.
,若f[f(-1)]=2,則實數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b,c為實數(shù),且a<b<0,則下列命題正確的是(  )
A、ac2<bc2
B、
1
a
1
b
C、
b
a
a
b
D、a2>ab>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形ABC的三個頂點的坐標(biāo)為A(2,4),B(-1,1),C(1,-1),求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=kx+b與函數(shù)y=
kb
x
在同一坐標(biāo)系中的大致圖象正確的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線C1:x2+y2-8x=0與曲線C2:y(y-mx-m)=0有四個不同交點,則實數(shù)m的取值范圍是( 。
A、(-
4
3
,
4
3
B、(-
4
3
,0)∪(0,
4
3
C、[-
4
3
,
4
3
]
D、(-∞,-
4
3
)∪(
4
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a2=b2+c2+bc,則A=
 

查看答案和解析>>

同步練習(xí)冊答案