【題目】已知向量,向量與向量的夾角為,且.

(1)求向量

(2)設(shè)向量,向量,其中,若,試求的取值范圍.

【答案】(1)(2)

【解析】

(1)設(shè)向量=(x,y),由已知中向量=(1,1),向量與向量夾角為,且=﹣1.根據(jù)向量數(shù)量積的運(yùn)算法則,可得到關(guān)于x,y的方程組,解方程可得向量的坐標(biāo);(2)由向量=(1,0)向量,其中(,),其中,,若=0,我們可以求出2的表達(dá)式,利用三角函數(shù)的性質(zhì)可得的取值范圍.

(1)設(shè)向量=(x,y),∵向量=(1,1),

=x+y=﹣1…①=||||cos=﹣1,

x2+y2=1

解得x=0,y=﹣1x=﹣1,y=0

=(﹣1,0),或=(0,﹣1),

(2)∵向量=(1,0),,則=(0,﹣1),

又∵向量=(cosx,cos2)),

+=(cosx,cos2)﹣1)=(cosx, ),

則|+|2=cos2x+=cos2x-sinx+=- ,

,, |+|2

|+|≤

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖在三棱錐中, 分別為棱的中點(diǎn),已知,

求證(1)直線平面

(2)平面 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三邊長(zhǎng)分別是,.下列說法正確的是(

A.所在直線為旋轉(zhuǎn)軸,將此三角形旋轉(zhuǎn)一周,所得旋轉(zhuǎn)體的側(cè)面積為

B.所在直線為旋轉(zhuǎn)軸,將此三角形旋轉(zhuǎn)一周,所得旋轉(zhuǎn)體的體積為

C.所在直線為旋轉(zhuǎn)軸,將此三角形旋轉(zhuǎn)一周,所得旋轉(zhuǎn)體的側(cè)面積為

D.所在直線為旋轉(zhuǎn)軸,將此三角形旋轉(zhuǎn)一周,所得旋轉(zhuǎn)體的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】江心洲有一塊如圖所示的江邊,,為岸邊,岸邊形成角,現(xiàn)擬在此江邊用圍網(wǎng)建一個(gè)江水養(yǎng)殖場(chǎng),有兩個(gè)方案:方案l:在岸邊上取兩點(diǎn),用長(zhǎng)度為的圍網(wǎng)依托岸邊線圍成三角形,兩邊為圍網(wǎng));方案2:在岸邊,上分別取點(diǎn),用長(zhǎng)度為的圍網(wǎng)依托岸邊圍成三角形.請(qǐng)分別計(jì)算,面積的最大值,并比較哪個(gè)方案好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于任意實(shí)數(shù),定義設(shè)函數(shù),,則函數(shù)的最大值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率,且橢圓的短軸長(zhǎng)為2.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知直線l1l2過右焦點(diǎn)F2,且它們的斜率乘積為﹣1,設(shè)l1,l2分別與橢圓交于點(diǎn)A,B和C,D.①求AB+CD的值;②設(shè)AB的中點(diǎn)M,CD的中點(diǎn)為N,求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐底面,底面為等腰梯形,,,,,點(diǎn)E邊上的點(diǎn),.

1)求證:平面;

2)若,求點(diǎn)E到平面的距離 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長(zhǎng)為2,ACBD=O.將正方形ABCD沿對(duì)角線BD折起,使AC=a,得到三棱錐A-BCD,如圖所示.

(1)當(dāng)a=2時(shí),求證:AO平面BCD.

(2)當(dāng)二面角A-BD-C的大小為120°時(shí),求二面角A-BC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,縱、橫坐標(biāo)都是整數(shù)的點(diǎn)稱為整點(diǎn)。請(qǐng)?jiān)O(shè)計(jì)一種方法將所有的整點(diǎn)染色,每一個(gè)整點(diǎn)染成白色、紅色或黑色中的一種顏色,使得

(1)每一種顏色的點(diǎn)出現(xiàn)在無窮多條平行于橫軸的直線上;

(2)對(duì)于任意白點(diǎn)、紅點(diǎn)及黑點(diǎn),總可以找到一個(gè)紅點(diǎn),使為一平行四邊形。證明你設(shè)計(jì)的方法符合上述要求。

查看答案和解析>>

同步練習(xí)冊(cè)答案