如圖,在體積為的正三棱錐中,長(zhǎng)為,為棱的中點(diǎn),求

(1)異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)正三棱錐的表面積.

(1);(2)

解析試題分析:(1)本題求異面直線所成的角,根據(jù)定義要把這個(gè)角作出來,一般平移其中一條,到與另一條相交為此,題中由于有的中點(diǎn),因此我們以中點(diǎn),就有,那么就是所求的角(或其補(bǔ)角);(2)要求正三棱錐的表面積,必須求得斜高,由已知體積,可以先求得棱錐的高,取的中心,那么就是棱錐的高,下面只要根據(jù)正棱錐的性質(zhì)(正棱錐中的直角三角形)應(yīng)該能求得側(cè)棱長(zhǎng)或斜高,有了斜高,就能求得棱錐的側(cè)面積了,再加上底面積,就得到表面積了.
試題解析:(1)過點(diǎn)平面,垂足為,則的中心,由(理1分文2分)
又在正三角形中得,所以           (理2分文4分)
中點(diǎn),連結(jié)、,故,
所以就是異面直線所成的角.(理4分文6分)
在△中,,,      (理5分文8分)
所以.      (理6分文10分)
所以,異面直線所成的角的大小為. (理7分文12分)

(2)由可得正三棱錐的側(cè)面積為
           (理10分)
所以正三棱錐的表面積為
.            (理12分)
考點(diǎn):(1)異面直線所成的角;(2)棱錐的體積與表面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在四棱錐中,平面,,的中點(diǎn),上的點(diǎn)且,為△邊上的高.
(1)證明:平面
(2)若,,,求三棱錐的體積;
(3)證明:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱柱中,底面ABCD和側(cè)面都是矩形,E是CD的中點(diǎn),
.
(1)求證:;
(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在五面體中,已知平面,,,,

(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知幾何體由正方體和直三棱柱組成,其三視圖和直觀圖(單位:cm)如圖所示.設(shè)兩條異面直線所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖在四棱錐中,底面是矩形,平面,,點(diǎn)中點(diǎn),點(diǎn)邊上的任意一點(diǎn).

(1)當(dāng)點(diǎn)邊的中點(diǎn)時(shí),判斷與平面的位置關(guān)系,并加以證明;
(2)證明:無論點(diǎn)邊的何處,都有
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖在三棱柱ABC-A1B1C1中,AB⊥AC,頂點(diǎn)A1在底面ABC上的射影恰為點(diǎn)B,且AB=AC=A1B=2.
 
(1)證明:平面A1AC⊥平面AB1B;
(2)若點(diǎn)P為B1C1的中點(diǎn),求三棱錐P-ABC與四棱錐P-AA1B1B的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)倒圓錐形容器的軸截面為一個(gè)等邊三角形,在此容器內(nèi)注入水,并浸入半徑為的一個(gè)實(shí)心球,使球與水面恰好相切,試求取出球后水面高為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知四棱錐PABCD的正視圖是一個(gè)底邊長(zhǎng)為4、腰長(zhǎng)為3的等腰三角形,如圖分別是四棱錐PABCD的側(cè)視圖和俯視圖.

(1)求證:ADPC;
(2)求四棱錐PABCD的側(cè)面PAB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案