設(shè)α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若m?α,n?α,m∥β,n∥β,則α∥β;
②若α∥β,l?α,則l∥β;
③若α∩β=l,β∩γ=m,γ∩α=n,l∥m,則 m∥n;
④若α⊥γ,β⊥γ,則α∥β;
則其中所有正確命題的序號(hào)是
②③
②③
分析:由面面平行的判定定理,得①不正確;根據(jù)面面平行的性質(zhì),可得結(jié)論;利用線面平行的判定與性質(zhì),可知結(jié)論正確;α⊥γ,β⊥γ,則α∥β或α、β相交.
解答:解:若“m?α,n?α,m∥β,n∥β,且m∩n=O”,則“α∥β”成立,但條件中缺少了“m∩n=O”,故結(jié)論“α∥β”不一定成立,即①不正確;
若α∥β,l?α,則根據(jù)面面平行的性質(zhì),可得l∥β,故②正確;
α∩β=l,β∩γ=m,l∥m,∴l(xiāng)∥γ,∵γ∩α=n,∴l(xiāng)∥n,∴m∥n,即③正確;
④若α⊥γ,β⊥γ,則α∥β或α、β相交,即④不正確;
故答案為:②③.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是平面與平面之間的位置關(guān)系,空間中直線與直線之間的位置關(guān)系,空間中直線與平面之間的位置關(guān)系,熟練掌握空間線與面之間位置關(guān)系是判定方法及性質(zhì)定理是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、設(shè)α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若α⊥γ,β⊥γ,則α∥β;
②若α∥β,l?α,則l∥β;
③若m?α,n?α,m∥β,n∥β,則α∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中命題正確的是
②④
(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、設(shè)α、β、γ為兩兩不重合的平面,l、m、n為兩兩不重合的直線,給出下列四個(gè)命題:
①若α⊥γ,β⊥γ,則α∥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α∥β,l?α,則l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中真命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若α⊥γ,β⊥γ,則α∥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α∥β,l?α,則l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中正確命題是
③④
③④
 (填寫序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知a,b,c為兩兩不相等的實(shí)數(shù),求證:a2+b2+c2>ab+bc+ca;
(2)設(shè)a,b,c∈(0,+∞),且a+b+c=1,求證(
1
a
-1)(
1
b
-1)(
1
c
-1)≥8

查看答案和解析>>

同步練習(xí)冊(cè)答案