【題目】已知拋物線的焦點為,其準(zhǔn)線與軸交于點,過點的直線與拋物線交于,兩點.

(1)求拋物線的方程及的值;

(2)若點關(guān)于軸的對稱點為,證明:存在實數(shù),使得.

【答案】(1),4;(2)證明見解析.

【解析】

1)根據(jù)準(zhǔn)線上點的坐標(biāo),得到,求出,即可得到拋物線方程;設(shè)直線的方程為,聯(lián)立直線與拋物線方程,由韋達(dá)定理,即可求出

2)先由(1)得,由點關(guān)于軸的對稱點為,得到,根據(jù)題意,證明直線恒過定點,再令,由,即可推出結(jié)論成立.

(1)解:因為拋物線的準(zhǔn)線與軸交于點,

所以

解得.

所以拋物線的方程為.

設(shè)直線的方程為,

聯(lián)立

整理得,其中,

.

.

(2)證明:由(1)知,

因為點關(guān)于軸的對稱點為,

所以

則直線的方程為,

,

,

.

,得

所以直線恒過定點.

所以點在線段上,

所以不妨令.

因為,

所以,

所以,

所以.

所以存在實數(shù),使得,命題得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩隊學(xué)生參加“知識聯(lián)想”搶答賽,比賽規(guī)則:①主持人依次給出兩次提示,第一次提示后答對得2分,第二次提示后答對得1分,沒搶到或答錯者不得分;②主持人給出第一個提示后開始搶答,第一輪搶答出錯失去第二輪答題資格;③每局比賽分兩輪,若第一輪搶答者給出正確答案,則此局比賽結(jié)束,若第一輪答題者答錯,主持人提示后另一隊直接答題。如果甲、乙兩隊搶到答題權(quán)機會均等,并且勢均力敵,第一個提示后答對概率均為;第二個提示后答對概率均為,為甲隊在一局比賽中的分.

(1)求甲在一局比賽中得分的分布列;

(2)若比賽共4局,求甲4局比賽中至少得6分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,點在平面內(nèi)運動,使得二面角的平面角與二面角的平面角互余,則點的軌跡是( )

A. 一段圓弧 B. 橢圓的一部分 C. 拋物線 D. 雙曲線的一支

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】阿基米德是古希臘偉大的哲學(xué)家、數(shù)學(xué)家、物理學(xué)家,對幾何學(xué)、力學(xué)等學(xué)科作出過卓越貢獻(xiàn).為調(diào)查中學(xué)生對這一偉大科學(xué)家的了解程度,某調(diào)查小組隨機抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”.他們的調(diào)查結(jié)果如下:

0項

1項

2項

3項

4項

5項

5項以上

理科生(人)

1

10

17

14

14

10

4

文科生(人)

0

8

10

6

3

2

1

(1)完成如下列聯(lián)表,并判斷是否有的把握認(rèn)為,了解阿基米德與選擇文理科有關(guān)?

比較了解

不太了解

合計

理科生

文科生

合計

(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.

(i)求抽取的文科生和理科生的人數(shù);

(ii)從10人的樣本中隨機抽取3人,用表示這3人中文科生的人數(shù),求的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201829-25,23屆冬奧會在韓國平昌舉行.4年后,24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學(xué)在平昌冬奧會開幕后的第二天,從全校學(xué)生中隨機抽取了120名學(xué)生,對是否收看平昌冬奧會開幕式情況進(jìn)行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

(Ⅰ)根據(jù)上表說明,能否有的把握認(rèn)為,收看開幕式與性別有關(guān)?

(Ⅱ)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法,選取12人參加2022年北京冬奧會志愿者宣傳活動.

(ⅰ)問男、女學(xué)生各選取了多少人?

(ⅱ)若從這12人中隨機選取3人到校廣播站開展冬奧會及冰雪項目的宣傳介紹,設(shè)選取的3人中女生人數(shù)為,寫出的分布列,并求.

收看

沒收看

男生

60

20

女生

20

20

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),圓的方程為.以原點為極點,軸正半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求直線及圓的極坐標(biāo)方程;

(Ⅱ)若直線與圓交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的長軸長為,且橢圓與圓 的公共弦長為.

(1)求橢圓的方程.

(2)經(jīng)過原點作直線(不與坐標(biāo)軸重合)交橢圓于, 兩點, 軸于點,點在橢圓上,且,求證: , 三點共線..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:

甲說:“作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“, 兩項作品未獲得一等獎”;

丁說:“作品獲得一等獎”.

若這四位同學(xué)只有兩位說的話是對的,則獲得一等獎的作品是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求直線的普通方程與圓的直角坐標(biāo)方程;

(2)設(shè)動點在圓上,動線段的中點的軌跡為,與直線交點為,且直角坐標(biāo)系中,點的橫坐標(biāo)大于點的橫坐標(biāo),求點的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案