過(guò)點(diǎn)(2,1),且垂直于l3:x+2y-5=0的直線方程為
 
考點(diǎn):直線的一般式方程與直線的垂直關(guān)系
專題:直線與圓
分析:設(shè)垂直于l3:x+2y-5=0的直線方程為2x-y+c=0,把點(diǎn)(2,1)代入,能得到所求直線方程.
解答: 解:設(shè)垂直于l3:x+2y-5=0的直線方程為2x-y+c=0,
把點(diǎn)(2,1)代入,得:c=-3.
∴所求直線方程為:2x-y-3=0.
故答案為:2x-y-3=0.
點(diǎn)評(píng):本題考查直線方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意直線垂直的位置關(guān)系的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=-n2,數(shù)列{bn}滿足:b1=2,bn+1=3bn-t(n-1),已知an+1+bn+1=3(an+bn)對(duì)任意n∈N*都成立
(1)求t的值;
(2)設(shè)數(shù)列{an2+anbn}的前n項(xiàng)的和為Tn,問(wèn)是否存在互不相等的正整數(shù)m,k,r,使得m,k,r成等差數(shù)列,且Tm+1,Tk+1,Tr+1成等比數(shù)列?若存在,求出m,k,r;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x2+x+1
x2+1
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=2sin(
π
8
x+
π
4
)(-2<x<14)的圖象與x軸交于點(diǎn)A,過(guò)點(diǎn)A的直線與函數(shù)的圖象交于B、C兩點(diǎn),則(
OB
+
OC
)•
OA
=
 
.(其中O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y∈(-
1
2
1
2
),m∈R,m≠0,若
x3+sinx+2m=0
4y3+
1
2
sin2y-m=0
,則
y
x
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a<0,若函數(shù)y=ex+2ax,x∈R有小于零的極值點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|2x-a|-x2是定義在R上的偶函數(shù),若方程f(x)=m恰有兩個(gè)實(shí)根,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,0),點(diǎn)P在圓C:
x=2cosθ
y=1-2sinθ
(θ為參數(shù))上,則圓C的半徑為
 
,|PA|最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?x>0,sinx≥1,則?p為
 
(填“真”或“假”)命題.

查看答案和解析>>

同步練習(xí)冊(cè)答案