【題目】已知函數(shù).
(1)若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
(2)是否存在整數(shù),使得函數(shù)在區(qū)間上存在極小值,若存在,求出所有整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)存在整數(shù),使得函數(shù)在區(qū)間上存在極小值.
【解析】試題分析:(1)由,設(shè),則,利用導(dǎo)數(shù)工具求得,原命題可轉(zhuǎn)化為對(duì)恒成立的取值范圍為;(2)易得,利用分類討論思想對(duì)、和分三種情況可得:存在整數(shù),使得函數(shù)在區(qū)間上存在極小值.
試題解析:(1)由得,
設(shè),則,
,∴,則在上是減函數(shù),
∴,
對(duì)恒成立,即對(duì)恒成立,
∴,則實(shí)數(shù)的取值范圍為.
(2),
∴,
①當(dāng)時(shí), , 單調(diào)遞增,無(wú)極值.
②當(dāng)時(shí),若,或,則;若,則.
∴當(dāng)時(shí),有極小值.
在上有極小值,∴.∴存在整數(shù).
③當(dāng)時(shí),若或,則;若,則.
∴當(dāng)時(shí), 有極小值.
在上有極小值,
∴,得.
由①②③得,存在整數(shù),使得函數(shù)在區(qū)間上存在極小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)求與圓心在直線上,且過點(diǎn)A(2,-3),B(-2,-5)的圓C的方程.
(2)設(shè)是圓C上的點(diǎn),求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三一次月考之后,為了為解數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機(jī)抽出若干名學(xué)生此次的數(shù)學(xué)成績(jī),按成績(jī)分組,制成了下面頻率分布表:
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第一組 | 5 | 0.05 | |
第二組 | 35 | 0.35 | |
第三組 | 30 | 0.30 | |
第四組 | 20 | 0.20 | |
第五組 | 10 | 0.10 | |
合計(jì) | 100 | 1.00 |
(1)試估計(jì)該校高三學(xué)生本次月考的平均分;
(2)如果把表中的頻率近似地看作每個(gè)學(xué)生在這次考試中取得相應(yīng)成績(jī)的概率,那么從所有學(xué)生中采用逐個(gè)抽取的方法任意抽取3名學(xué)生的成績(jī),并記成績(jī)落在中的學(xué)生數(shù)為,
求:①在三次抽取過程中至少有兩次連續(xù)抽中成績(jī)?cè)?/span>中的概率;
②的分布列和數(shù)學(xué)期望.(注:本小題結(jié)果用分?jǐn)?shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合P={x|a+1≤x≤2a+1},Q={x|1≤2x+5≤15}.
(1)已知a=3,求(RP)∩Q;
(2)若P∪Q=Q,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017屆江蘇如東高級(jí)中學(xué)等四校高三12月聯(lián)考】已知數(shù)列滿足,,且對(duì)任意,都有.
(1)求,;
(2)設(shè)().
①求數(shù)列的通項(xiàng)公式;
②設(shè)數(shù)列的前項(xiàng)和,是否存在正整數(shù),,且,使得,,成等比數(shù)列?若存在,求出,的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
(2)是否存在整數(shù),使得函數(shù)在區(qū)間上存在極小值,若存在,求出所有整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn),橢圓的左,右頂點(diǎn)分別為.過點(diǎn)的直線與橢圓交于兩點(diǎn),且的面積是的面積的3倍.
(Ⅰ)求橢圓的方程;
(Ⅱ)若與軸垂直,是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn),且滿足,試問直線的斜率是否為定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|ax2-3x+2=0}.
(1)若A是單元素集合,求集合A;
(2)若A中至少有一個(gè)元素,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了預(yù)防流感,某學(xué)校對(duì)教室用藥熏消毒法進(jìn)行消毒,已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間t(小時(shí))成正比;藥物釋放完畢后,y與t的函數(shù)關(guān)系式為 (a為常數(shù)),如圖所示.根據(jù)圖中提供的信息,回答下列問題:
(1)從藥物釋放開始,每立方米空氣中的含藥量y(毫克)與時(shí)間t(小時(shí))之間的函數(shù)關(guān)系式為_________;
(2)據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時(shí),學(xué)生方可進(jìn)教室,那么從藥物釋放開始,至少需要經(jīng)過_________小時(shí)后,學(xué)生才能回到教室.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com