(本小題共14分)已知函數(shù)其中常數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),若函數(shù)有三個(gè)不同的零點(diǎn),求m的取值范圍;
(3)設(shè)定義在D上的函數(shù)在點(diǎn)處的切線方程為當(dāng)時(shí),若在D內(nèi)恒成立,則稱(chēng)P為函數(shù)的“類(lèi)對(duì)稱(chēng)點(diǎn)”,請(qǐng)你探究當(dāng)時(shí),函數(shù)是否存在“類(lèi)對(duì)稱(chēng)點(diǎn)”,若存在,請(qǐng)最少求出一個(gè)“類(lèi)對(duì)稱(chēng)點(diǎn)”的橫坐標(biāo);若不存在,說(shuō)明理由.
(1)的單調(diào)遞增區(qū)間為.(2).
(3)是一個(gè)類(lèi)對(duì)稱(chēng)點(diǎn)的橫坐標(biāo).

試題分析:(1)由f(x)="2x-(a+2)+" ==
,能求出當(dāng)a>2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間.
(2)a=4,f′(x)=2x+-6,故f(x)="2x+" -6≥4-6,不存在6x+y+m=0這類(lèi)直線的切線.
(3)y=g(x)=(2x0+ -6)(x-x0)+ -6x0+4lnx0,令h(x)=f(x)-g(x),由此入手,能夠求出一個(gè)“類(lèi)對(duì)稱(chēng)點(diǎn)”的橫坐標(biāo).
解:(1)由可知,函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000830864553.png" style="vertical-align:middle;" />,
.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000830896415.png" style="vertical-align:middle;" />,所以.
當(dāng)時(shí),;當(dāng)時(shí),,
所以的單調(diào)遞增區(qū)間為.
(2)當(dāng)時(shí),.
所以,當(dāng)變化時(shí),,的變化情況如下:

(0,1)
1
(1,2)
2
(2,

+
0

0
+

單調(diào)遞增
取極大值
單調(diào)遞減
取極小值
單調(diào)遞增
所以,
.
函數(shù)的圖象大致如下:
 
所以若函數(shù)有三個(gè)不同的零點(diǎn),.
(3)由題意,當(dāng)時(shí),,則在點(diǎn)P處切線的斜率;所以
.
,
,.
當(dāng)時(shí),上單調(diào)遞減,所以當(dāng)時(shí),從而有時(shí),;
當(dāng)時(shí),上單調(diào)遞減,所以當(dāng)時(shí),從而有時(shí),;所以在上不存在“類(lèi)對(duì)稱(chēng)點(diǎn)”.
當(dāng)時(shí),,所以上是增函數(shù),故
所以是一個(gè)類(lèi)對(duì)稱(chēng)點(diǎn)的橫坐標(biāo).
點(diǎn)評(píng):解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化,注意導(dǎo)數(shù)性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)已知函數(shù)
(Ⅰ)若函數(shù)上為增函數(shù),求正實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,則 的值為   (     )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)的導(dǎo)函數(shù),則函數(shù)的單調(diào)遞減區(qū)間是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若曲線的某一切線與直線平行,則切點(diǎn)坐標(biāo)
            ,切線方程為            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在區(qū)間上的最大值是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分15分)過(guò)曲線C:外的點(diǎn)A(1,0)作曲線C的切線恰有兩條,
(Ⅰ)求滿(mǎn)足的等量關(guān)系;
(Ⅱ)若存在,使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
設(shè)函數(shù)時(shí)取得極值.
(I)求的值;
(II)若對(duì)于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線y=ex在點(diǎn)A(0,1)處的切線斜率為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案