若實數(shù)a、b、c成等差數(shù)列,點P(–1, 0)在動直線l:ax+by+c=0上的射影為M,點N(0, 3),則線段MN長度的最小值是     

試題分析:因為a,b,c成等差數(shù)列,所以2b=a+c,即a-2b+c=0,可得方程ax+by+c=0恒過Q(1,-2),
又點P(-1,0)在動直線ax+by+c=0上的射影為M,所以∠PMQ=90°,
所以M在以PQ為直徑的圓上,
所以此圓的圓心A坐標(biāo)為(),即A(0,-1),半徑r= , 
又N(0,3),所以|AN|= ,線段MN長度的最小值是。
點評:此題考查了等差數(shù)列的性質(zhì),恒過定點的直線方程,圓周角定理,線段中點坐標(biāo)公式,以及兩點間的距離公式,利用等差數(shù)列的性質(zhì)得到2b=a+c,即a-2b+c=0是解本題的突破點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若點到點的距離比它到直線的距離少1,則動點的軌跡方程是    __________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心為坐標(biāo)原點O,焦點在x軸上,斜率為1且過橢圓右焦點F的直線交橢圓于A、B兩點,=(3,-1)共線.
(1)求橢圓的離心率;
(2)設(shè)M為橢圓上任意一點,且),證明為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)雙曲線x2-y2=1的兩條漸近線與直線x=圍成的三角形區(qū)域(包含邊界)為E,P(x,y)為該區(qū)域的一個動點,則目標(biāo)函數(shù)z=x-2y的最小值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點分別是雙曲線的左、右焦點,過且垂直于軸的直線與雙曲線交于兩點,若是鈍角三角形,則該雙曲線離心率的取值范圍是
(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某海域有、兩個島嶼,島在島正東4海里處。經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)現(xiàn)過魚群。以、所在直線為軸,的垂直平分線為軸建立平面直角坐標(biāo)系。

(1)求曲線的標(biāo)準(zhǔn)方程;(6分)
(2)某日,研究人員在、兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),、兩島收到魚群在處反射信號的時間比為,問你能否確定處的位置(即點的坐標(biāo))?(8分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

等軸雙曲線的中心在原點,焦點在軸上,與拋物線的準(zhǔn)線交于兩點,;則的實軸長為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點P到點,及到直線的距離都相等,如果這樣的點恰好只有一個,那么a的值是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)分別是圓和橢圓的弦,且弦的端點在軸的異側(cè),端點的橫坐標(biāo)分別相等,縱坐標(biāo)分別同號.

(Ⅰ)若弦所在直線斜率為,且弦的中點的橫坐標(biāo)為,求直線的方程;
(Ⅱ)若弦過定點,試探究弦是否也必過某個定點. 若有,請證明;若沒有,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案